サインイン

Stem cell research aims to find ways to use stem cells to regenerate and repair cellular damage. Over time, most adult cells undergo the wear and tear of aging and lose their ability to divide and repair themselves. Stem cells do not display a particular morphology or function. Adult stem cells, which exist as a small subset of cells in most tissues, keep dividing and can differentiate into a number of specialized cells generally formed by that tissue. These cells enable the body to renew and repair body tissues.

The mechanisms that induce a non-differentiated cell to become a specialized cell are poorly understood. In a laboratory setting, it is possible to induce stem cells to differentiate into specialized cells by changing the physical and chemical conditions of growth. Several sources of stem cells are used experimentally and are classified according to their origin and potential for differentiation. Human embryonic stem cells (hESCs) are extracted from embryos and are pluripotent. The adult stem cells that are present in many organs and differentiated tissues, such as bone marrow and skin, are multipotent, being limited in differentiation to the types of cells found in those tissues.

The stem cells isolated from umbilical cord blood are also multipotent, as are cells from deciduous teeth (baby teeth). Researchers have recently developed induced pluripotent stem cells (iPSCs) from mouse and human adult stem cells. These cells are genetically reprogrammed multipotent adult cells that function like embryonic stem cells; they are capable of generating cells characteristic of all three germ layers.

Because of their capacity to divide and differentiate into specialized cells, stem cells offer a potential treatment for diseases such as diabetes and heart disease. Cell-based therapy refers to treatment in which stem cells induced to differentiate in a growth dish are injected into a patient to repair damaged or destroyed cells or tissues. Many obstacles must be overcome for the application of cell-based therapy. Although embryonic stem cells have a nearly unlimited range of differentiation potential, they are seen as foreign by the patient’s immune system and may trigger rejection. Also, the destruction of embryos to isolate embryonic stem cells raises considerable ethical and legal questions.

In contrast, adult stem cells isolated from a patient are not seen as foreign by the body, but they have a limited range of differentiation. Some individuals bank the cord blood or deciduous teeth of their child, storing away those sources of stem cells for future use, should their child need it. Induced pluripotent stem cells are considered a promising advance in the field because using them avoids the legal, ethical, and immunological pitfalls of embryonic stem cells.

This text is adapted from openstax Anatomy and physiology 2e, Section 3.6: Cell differentiation.

タグ
Stem Cell ResearchCellular RegenerationAdult Stem CellsPluripotent Stem CellsMultipotent Stem CellsInduced Pluripotent Stem CellsDifferentiation PotentialCell based TherapyEmbryonic Stem CellsImmune ResponseEthical ConsiderationsTissue RepairSpecialized Cells

章から 39:

article

Now Playing

39.11 : Stem Cell Culture

上皮組織における幹細胞の生物学と再生

4.9K 閲覧数

article

39.1 : 接合子の発生と幹細胞形成

上皮組織における幹細胞の生物学と再生

4.7K 閲覧数

article

39.2 : 幹細胞の供給源と効力

上皮組織における幹細胞の生物学と再生

4.5K 閲覧数

article

39.3 : 幹細胞ニッチ

上皮組織における幹細胞の生物学と再生

4.9K 閲覧数

article

39.4 : 腸管幹細胞のリニューアル

上皮組織における幹細胞の生物学と再生

2.5K 閲覧数

article

39.5 : 腸管幹細胞の再生におけるエフリン-EPHシグナル伝達の役割

上皮組織における幹細胞の生物学と再生

2.2K 閲覧数

article

39.6 : 腸管幹細胞の再生におけるノッチシグナル伝達の役割

上皮組織における幹細胞の生物学と再生

2.0K 閲覧数

article

39.7 : 皮膚表皮幹細胞の再生

上皮組織における幹細胞の生物学と再生

2.4K 閲覧数

article

39.8 : バルジ幹細胞の多能性とニッチ

上皮組織における幹細胞の生物学と再生

3.1K 閲覧数

article

39.9 : 表皮幹細胞の臨床応用

上皮組織における幹細胞の生物学と再生

2.6K 閲覧数

article

39.10 : 成体幹細胞とがん幹細胞の特徴

上皮組織における幹細胞の生物学と再生

3.3K 閲覧数

article

39.12 : 幹細胞を使用しない組織再生

上皮組織における幹細胞の生物学と再生

1.6K 閲覧数

article

39.13 : 再生不可能なセル

上皮組織における幹細胞の生物学と再生

2.3K 閲覧数

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved