サインイン

Multiple regression assesses a linear relationship between one response or dependent variable and two or more independent variables. It has many practical applications.

Farmers can use multiple regression to determine the crop yield based on more than one factor, such as water availability, fertilizer, soil properties, etc. Here, the crop yield is the response or dependent variable as it depends on the other independent variables. The analysis requires the construction of a scatter plot followed by a multiple linear regression equation to calculate the multiple coefficient of determination, R2. Suppose the value of R2 is 96%; one can interpret that the different combinations of water and fertilizer explain 96% of the variation in the crop yield.

However, the value of R2 increases with the number of independent variables. So, an adjusted coefficient of determination that accounts for both - the sample size and number of variables is used during analysis.

タグ
Multiple RegressionDependent VariableIndependent VariablesCrop YieldLinear RelationshipScatter PlotMultiple Linear Regression EquationCoefficient Of DeterminationR2Adjusted Coefficient Of DeterminationSample SizeWater AvailabilityFertilizerSoil Properties

章から 11:

article

Now Playing

11.10 : Multiple Regression

相関と回帰

2.8K 閲覧数

article

11.1 : 相関

相関と回帰

11.0K 閲覧数

article

11.2 : 相関係数

相関と回帰

5.8K 閲覧数

article

11.3 : 線形相関係数の計算と解釈

相関と回帰

5.4K 閲覧数

article

11.4 : 回帰分析

相関と回帰

5.3K 閲覧数

article

11.5 : 外れ値と影響力のあるポイント

相関と回帰

3.8K 閲覧数

article

11.6 : 残差と最小二乗法のプロパティ

相関と回帰

6.8K 閲覧数

article

11.7 : 残差プロット

相関と回帰

3.9K 閲覧数

article

11.8 : バリエーション

相関と回帰

6.2K 閲覧数

article

11.9 : 予測区間

相関と回帰

2.1K 閲覧数

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved