The Anderson-Darling test is a statistical method used to determine whether a data sample is likely drawn from a specific theoretical distribution. Unlike parametric tests, it does not require assumptions about specific parameters of the distribution. Instead, it compares the sample's empirical cumulative distribution function (ECDF) with the cumulative distribution function (CDF) of the hypothesized distribution. Critical values for the test are specific to the chosen distribution rather than universal, making it adaptable to various distributions.

Developed by Theodore Wilbur Anderson and Donald Allan Darling in 1952, the test is widely used to check for normality, though it is a common misconception that it applies only to normal distributions. In fact, it can also test goodness-of-fit for distributions like exponential, Weibull, or logistic, as long as the relevant CDF is known.

A key consideration when using the Anderson-Darling test is whether a parametric or nonparametric approach is appropriate, depending on the information about the population distribution. Although it is frequently employed to test for normality, the test can assess fit across a broad range of distributions. It is considered an improvement over the Kolmogorov-Smirnov (K-S) test due to its greater sensitivity to deviations in the tails of the distribution, making it more effective for detecting outliers and extreme values. Finally, while calculating the Anderson-Darling test statistic manually can be complex, computer-based tools and software packages have simplified the process, providing both the test statistic and the critical values needed to interpret results efficiently.

章から 13:

article

Now Playing

13.11 : The Anderson-Darling Test

Nonparametric Statistics

429 閲覧数

article

13.1 : ノンパラメトリック統計の概要

Nonparametric Statistics

467 閲覧数

article

13.2 : ランク

Nonparametric Statistics

164 閲覧数

article

13.3 : サインテストの紹介

Nonparametric Statistics

470 閲覧数

article

13.4 : 一致したペアの符号検定

Nonparametric Statistics

26 閲覧数

article

13.5 : 名義データの符号検定

Nonparametric Statistics

18 閲覧数

article

13.6 : 単一母集団の中央値の符号検定

Nonparametric Statistics

17 閲覧数

article

13.7 : 一致したペアのWilcoxon符号順位検定

Nonparametric Statistics

21 閲覧数

article

13.8 : 単一母集団の中央値に対するWilcoxon符号順位検定

Nonparametric Statistics

30 閲覧数

article

13.9 : ウィルコクソン順位和検定

Nonparametric Statistics

44 閲覧数

article

13.10 : ブートス トラップ

Nonparametric Statistics

435 閲覧数

article

13.12 : スピアマンの順位相関検定

Nonparametric Statistics

474 閲覧数

article

13.13 : ケンドールのタウテスト

Nonparametric Statistics

416 閲覧数

article

13.14 : クラスカル・ウォリステスト

Nonparametric Statistics

401 閲覧数

article

13.15 : Wald-Wolfowitz ラン テスト I

Nonparametric Statistics

457 閲覧数

See More

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved