JoVE Logo

サインイン

21.9 : The Carnot Cycle and the Second Law of Thermodynamics

The Carnot engine works between two heat reservoirs of fixed temperatures. The Carnot cycle begs the following question: Is it possible to devise a heat engine that is more efficient than a Carnot engine between two fixed temperatures? The answer lies in designing a Carnot refrigerator.

Since the individual steps in a Carnot cycle can be reversed, the entire cycle is, thus, reversible. If a Carnot cycle is reversed, it becomes a Carnot refrigerator. It extracts heat Qc from a cold reservoir at temperature Tc when the ideal gas is allowed to expand isothermally. The gas is then compressed adiabatically until its temperature reaches Th. Isothermal compression of the gas results in heat Qh rejected to a hot reservoir at temperature Th. The gas is then allowed to expand adiabatically, causing its temperature to drop to Tc and, thus, completing the cycle.

The relationship between the temperature and volume of the ideal gas remains the same whichever way the engine runs. Hence, the unknown quantities Qc and Qh can be related to the known temperatures Tc and Th in the same way as for a forward Carnot cycle. The total work done by the gas is also similarly given by the area enclosed by the p-V curve.

Assume that a heat engine can be designed to operate between the same two temperatures but to have an efficiency greater than a Carnot engine. Then, combine this heat engine with a Carnot refrigerator. Effectively, the combined engine extracts a net amount of heat from the hot reservoir and converts it to work without any other effect. Thus, the combination violates the second law of thermodynamics.

A corollary of this is the Carnot principle. It helps us define ideal reversible systems and sets an upper limit of the maximum achievable efficiency of any heat engine operating between two fixed temperatures.

タグ

Carnot CycleSecond Law Of ThermodynamicsCarnot EngineHeat ReservoirsReversible CycleCarnot RefrigeratorIdeal GasIsothermal ExpansionAdiabatic CompressionEfficiencyHeat ExtractionTemperature volume RelationshipP V CurveCarnot PrincipleMaximum Achievable Efficiency

章から 21:

article

Now Playing

21.9 : The Carnot Cycle and the Second Law of Thermodynamics

熱力学の第二法則

2.5K 閲覧数

article

21.1 : 可逆的および不可逆的なプロセス

熱力学の第二法則

4.1K 閲覧数

article

21.2 : ヒートエンジン

熱力学の第二法則

2.7K 閲覧数

article

21.3 : 内燃機関

熱力学の第二法則

961 閲覧数

article

21.4 : オットーとディーゼルサイクル

熱力学の第二法則

1.3K 閲覧数

article

21.5 : 冷蔵庫とヒートポンプ

熱力学の第二法則

2.2K 閲覧数

article

21.6 : 熱力学の第二法則のステートメント

熱力学の第二法則

2.6K 閲覧数

article

21.7 : カルノーサイクル

熱力学の第二法則

2.8K 閲覧数

article

21.8 : カルノーサイクルの効率

熱力学の第二法則

2.5K 閲覧数

article

21.10 : エントロピー

熱力学の第二法則

2.6K 閲覧数

article

21.11 : 可逆過程におけるエントロピー変化

熱力学の第二法則

2.5K 閲覧数

article

21.12 : エントロピーと熱力学の第二法則

熱力学の第二法則

2.7K 閲覧数

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved