サインイン

Generators convert mechanical energy into electrical energy, whereas motors convert electrical energy into mechanical energy. A motor works by sending a current through a loop of wire located in a magnetic field. As a result, the magnetic field exerts a torque on the loop. This rotates a shaft, extracting mechanical work from the electrical current sent in initially. When the coil of a motor is turned, magnetic flux changes through the coil, and an emf (consistent with Faraday's law) is induced. The motor thus acts as a generator whenever its coil rotates. This happens whether the shaft is turned by an external input, like a belt drive, or by the action of the motor itself. When a motor is doing work, and its shaft is turning, an emf is generated. Lenz's law states that the emf opposes any change, so the input emf that powers the motor is opposed by the motor's self-generated emf, called the back emf of the motor.

The generator output of a motor is the difference between the supply voltage and the back emf. The back emf is zero when the motor is first turned on, meaning that the coil receives the full driving voltage, and the motor draws maximum current when it is on but not turning. As the motor spins faster, the back emf grows, always opposing the driving emf. This reduces the voltage across the coil and the amount of current it draws.

When a motor first comes on, it draws more current than when it runs at its normal operating speed. When a mechanical load is placed on the motor, like an electric wheelchair going up a hill, the motor slows, the back emf drops, more current flows, and more work can be done. If the motor runs at too low a speed, the larger current can overheat it, perhaps even burning it out. On the other hand, if there is no mechanical load on the motor, it increases its angular velocity until the back emf is nearly equal to the driving emf. Then the motor uses only enough energy to overcome friction.

タグ
Back EMFGeneratorsMotorsMechanical EnergyElectrical EnergyMagnetic FieldTorqueFaraday s LawInduced EmfLenz s LawSupply VoltageCurrent DrawMechanical LoadAngular VelocityFriction

章から 30:

article

Now Playing

30.18 : Back EMF

電磁誘導

2.5K 閲覧数

article

30.1 : 誘導

電磁誘導

3.7K 閲覧数

article

30.2 : ファラデーの法則

電磁誘導

3.7K 閲覧数

article

30.3 : レンツの法則

電磁誘導

3.3K 閲覧数

article

30.4 : モーションエムフ

電磁誘導

3.0K 閲覧数

article

30.5 : ファラデーディスクダイナモ

電磁誘導

1.9K 閲覧数

article

30.6 : 誘導電界

電磁誘導

3.4K 閲覧数

article

30.7 : 誘導電界:応用

電磁誘導

1.4K 閲覧数

article

30.8 : 渦電流

電磁誘導

1.4K 閲覧数

article

30.9 : 変位電流

電磁誘導

2.7K 閲覧数

article

30.10 : 変位電流の重要性

電磁誘導

4.2K 閲覧数

article

30.11 : 電磁界

電磁誘導

2.0K 閲覧数

article

30.12 : マクスウェルの電磁気学の方程式

電磁誘導

2.9K 閲覧数

article

30.13 : マクスウェル方程式の対称性

電磁誘導

3.1K 閲覧数

article

30.14 : アンペア・マクスウェルの法則:問題解決

電磁誘導

438 閲覧数

See More

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved