サインイン

A two-dimensional system in mechanical engineering involves the analysis of motion and forces in a plane. A two-dimensional force vector can be resolved into its components as:

Equation 1

where Fx and Fy are the vector components of F in the x and y directions, respectively. Each of these vector components can be represented as a scalar (Fx and Fy) times the appropriate unit vector.

To determine the components of the force vector in a Cartesian coordinate system, one must first determine the angle θ that the force makes with the positive x-axis. Assuming that the line of action of the force passes through the origin, its components can be expressed in the Cartesian form using basic trigonometry.

Equation 2

where F denotes the magnitude of the force vector. The direction of the force vector is given by the inverse of the tangent of the ratio of its components.

Equation 3

However, in cases where the line of action of the force vector does not pass through the origin, its vector components can still be expressed in Cartesian form using the same approach. We can choose the sign of each component based on the direction of the force vector. By resolving the force vector into its components, we can determine the force's net effect on the structure in question.

Understanding the two-dimensional force system is critical for engineers to analyze and design structures that are safe and structurally sound. This knowledge provides the foundational understanding of how a structure will react to various forces and helps pinpoint the design weaknesses, if any.

タグ
Two dimensional Force SystemMechanical EngineeringForce VectorVector ComponentsCartesian Coordinate SystemScalarUnit VectorTrigonometryForce MagnitudeStructural AnalysisDesign Weaknesses

章から 2:

article

Now Playing

2.6 : Two-Dimensional Force System

力のベクトル

802 閲覧数

article

2.1 : スカラーとベクトル

力のベクトル

1.1K 閲覧数

article

2.2 : ベクトル演算

力のベクトル

1.1K 閲覧数

article

2.3 : 力の紹介

力のベクトル

422 閲覧数

article

2.4 : 力の分類

力のベクトル

1.0K 閲覧数

article

2.5 : 力のベクトル加算

力のベクトル

537 閲覧数

article

2.7 : 2次元力システム:問題解決

力のベクトル

493 閲覧数

article

2.8 : スカラー表記

力のベクトル

602 閲覧数

article

2.9 : デカルトベクトル表記

力のベクトル

652 閲覧数

article

2.10 : ベクトルの方向余弦

力のベクトル

371 閲覧数

article

2.11 : 3次元力システム

力のベクトル

1.8K 閲覧数

article

2.12 : 3次元力システム:問題解決

力のベクトル

564 閲覧数

article

2.13 : 位置ベクトル

力のベクトル

669 閲覧数

article

2.14 : 線に沿ってベクトルを強制する

力のベクトル

423 閲覧数

article

2.15 : ドット積

力のベクトル

248 閲覧数

See More

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved