サインイン

Drugs are chemical substances that modify biological responses by interacting with macromolecular targets such as receptors, ion channels, transporters, and enzymes. Pharmacodynamics describes the course of action of drugs leading to the physiological effect at a specific site in the body.

Drugs can be agonists or antagonists. Like the endogenous ligands, agonists always bind and activate the target to produce a cellular response. Agonist binding induces a conformational change which in turn activates the target. Some targets respond directly to drugs by opening or closing ion channels. Others initiate a series of molecular events by coupling with downstream effectors to bring about a response.

Unlike agonists, antagonists bind to the target to inactivate them and inhibit the cellular response. Antagonists act by blocking the binding of agonists or endogenous ligands, suppressing target activity. Drugs compete with the endogenous ligand for the ligand binding site on the target. However, some drugs bind to alternative target sites called allosteric sites and act by either enhancing the binding of agonists to the target or blocking it. These drugs are also called allosteric activators and inhibitors.

The physical and chemical properties of drugs often influence their activity. For example, antacids usually contain salts of calcium, magnesium, and aluminum as active ingredients. Such alkaline compounds help neutralize gastric HCl, reducing the acid's corrosive effects on the lining of the esophagus and providing relief from acid reflux and heartburn.

Additionally, several recently approved biologics, such as genetically engineered enzymes, monoclonal antibodies, and genetically modified viruses and microbes, have been approved for therapeutic uses. An example of this is how a genetically modified live oncolytic herpes virus strain can be used to treat melanoma tumors left post-surgery.

Regardless of their mechanism of action, a drug needs to bind specifically to its target molecules to be a useful therapeutic tool. However, the drugs are only somewhat specific. As the concentration of the drug dose increases, the drug can bind to targets other than its actual target, causing various side effects such as inflammation or necrosis in epithelial and connective tissues. It is essential to focus on enhancing drug potency such that the drug is effective at a lower dose and has minimal side effects on the body.

タグ
Drug ActionPharmacodynamicsAgonistsAntagonistsReceptor BindingIon ChannelsTransportersEnzymesAllosteric SitesDrug PotencySide EffectsTherapeutic UsesBiologicsGenetically Engineered EnzymesMonoclonal AntibodiesOncolytic Virus

章から 4:

article

Now Playing

4.1 : Principles of Drug Action

薬力学

5.5K 閲覧数

article

4.2 : 薬物作用の標的:概要

薬力学

5.2K 閲覧数

article

4.3 : シグナル伝達:概要

薬力学

8.0K 閲覧数

article

4.4 : トランスデューサーメカニズム:Gタンパク質共役受容体

薬力学

1.6K 閲覧数

article

4.5 : リガンド依存性イオンチャネル受容体:ゲーティング機構

薬力学

1.9K 閲覧数

article

4.6 : トランスデューサーメカニズム:酵素結合受容体

薬力学

2.2K 閲覧数

article

4.7 : トランスデューサーメカニズム:核内受容体

薬力学

1.2K 閲覧数

article

4.8 : 用量反応関係:概要

薬力学

2.7K 閲覧数

article

4.9 : 用量反応関係:効力と効能

薬力学

3.9K 閲覧数

article

4.10 : 用量反応関係:選択性と特異性

薬力学

6.1K 閲覧数

article

4.11 : 治療指数

薬力学

3.8K 閲覧数

article

4.12 : 薬物-受容体相互作用:アゴニスト

薬力学

2.2K 閲覧数

article

4.13 : 薬物-受容体相互作用:アンタゴニスト

薬力学

2.4K 閲覧数

article

4.14 : 薬物の複合効果:拮抗作用

薬力学

7.5K 閲覧数

article

4.15 : 薬物の複合効果:シナジー

薬力学

3.0K 閲覧数

See More

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved