サインイン

G Protein–Coupled Receptors (GPCRs) are membrane-bound receptors that transiently associate with heterotrimeric G proteins and induce an appropriate response to various stimuli. GPCRs regulate critical physiological pathways and are excellent drug targets for treating diseases such as diabetes, cancer, obesity, depression, or Alzheimer's. Nearly 35% of approved drugs implement their therapeutic effects by selectively interacting with specific GPCRs.

GPCRs are also called heptahelical, 7TM, or serpentine receptors and consist of seven (H1-H7) transmembrane alpha-helices that span the bilayer to form a cylindrical core. The transmembrane helices are connected by three extracellular loops and three cytosolic loops. Together with the extracellular loops, the transmembrane alpha-helices include the central ligand-binding pocket of GPCR. In contrast, the heterotrimeric G protein binding site is the third cytosolic loop.

Ligand binding induces the GPCRs to undergo a conformational change and bind heterotrimeric G proteins with high affinity. An activated GPCR can bind and activate multiple G proteins to amplify the signal. G proteins, in turn, bind and activate downstream effectors and bring about a cellular response.

Although structurally, all mammalian GPCRs consist of seven transmembrane alpha-helical domains; they differ considerably in their sequence and functionality. GPCRs are broadly categorized into five classes, including Class A (rhodopsin-like), Class B (secretin receptor-like or B1), Class B2/ adhesion type, Class C (glutamate receptor-like), and Class F (frizzled-like).

  • Class A forms the largest subfamily of GPCRs that includes rhodopsins, chemokine receptors, and beta-adrenergic receptors.
  • Class B comprises hormone-binding receptors such as glucagon, parathyroid hormone, and vasoactive intestinal peptide (VIP) receptors.
    • The adhesion or B2 receptor class includes the adhesion G protein-coupled receptors or ADGR groups of receptors such as ADGRL1 and ADGRG1 that are essential for cell adhesion and migration.
  • Class C includes calcium-sensing receptors, gamma-aminobutyric acid (GABA) type B receptors, metabotropic glutamate receptors, and several taste receptors. Unlike the others, this group uses a characteristic venus fly trap module for ligand binding.
  • Class F, also called frizzled-like, includes smoothened or Smo receptors and functions in embryonic development.

Overall, humans consist of more than 800 GPCRs. Many detect hormones, growth factors, or endogenous ligands, while several others are involved in olfactory and gustatory responses. One commonly used class of drugs, beta-blockers, target beta-adrenergic receptors and treat conditions such as hypertension, cardiac arrhythmia, and anxiety. GPCRs provide an effective target to create an arsenal for various diseased conditions.

タグ
G Protein Coupled ReceptorsGPCRsHeterotrimeric G ProteinsDrug TargetsMembrane bound ReceptorsTransmembrane Alpha helicesLigand BindingConformational ChangeCellular ResponseClass A ReceptorsClass B ReceptorsClass C ReceptorsCell AdhesionSignal AmplificationTherapeutic Effects

章から 4:

article

Now Playing

4.4 : Transducer Mechanism: G Protein–Coupled Receptors

薬力学

1.7K 閲覧数

article

4.1 : 薬物作用の原則

薬力学

5.5K 閲覧数

article

4.2 : 薬物作用の標的:概要

薬力学

5.2K 閲覧数

article

4.3 : シグナル伝達:概要

薬力学

8.0K 閲覧数

article

4.5 : リガンド依存性イオンチャネル受容体:ゲーティング機構

薬力学

2.0K 閲覧数

article

4.6 : トランスデューサーメカニズム:酵素結合受容体

薬力学

2.2K 閲覧数

article

4.7 : トランスデューサーメカニズム:核内受容体

薬力学

1.2K 閲覧数

article

4.8 : 用量反応関係:概要

薬力学

2.7K 閲覧数

article

4.9 : 用量反応関係:効力と効能

薬力学

4.0K 閲覧数

article

4.10 : 用量反応関係:選択性と特異性

薬力学

6.1K 閲覧数

article

4.11 : 治療指数

薬力学

3.9K 閲覧数

article

4.12 : 薬物-受容体相互作用:アゴニスト

薬力学

2.2K 閲覧数

article

4.13 : 薬物-受容体相互作用:アンタゴニスト

薬力学

2.4K 閲覧数

article

4.14 : 薬物の複合効果:拮抗作用

薬力学

7.5K 閲覧数

article

4.15 : 薬物の複合効果:シナジー

薬力学

3.1K 閲覧数

See More

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved