JoVE Logo

サインイン

Ligand-gated ion channels are transmembrane proteins that play a vital role in intercellular communication and functions of the nervous system. They allow the influx of ions across the membrane once the neurotransmitter binds, allowing the subsequent transmission of electrical excitation across the neurons. Other ligand-gated ion channels, like the γ-aminobutyric acid (GABA) receptor, permit anions like chloride into the cells on the binding of the GABA molecule. Their entry into the cell lowers the membrane potential, i.e., hyperpolarizes the membrane, thereby inhibiting the firing of new action potentials and limiting the nerve impulse conduction. It forms the basis of the sedative effects of anesthetic agents whose binding promotes calming and induces sleep.

Ligand-gated ion channels fall into three subfamilies:

  • The 'Cys-loop' subfamily includes nicotinic acetylcholine receptors, GABA, glycine, and 5-hydroxytryptamine receptors. These are pentameric receptors, and each subunit comprises four transmembrane α-helices. Both agonists and antagonists target neurotransmitter binding sites or allosteric sites to regulate the gating of these receptors.
  • The second subfamily is the 'Pore-loop' channels that include ionotropic glutamate receptors such as N-methyl D-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA), and kainate receptors that bind the neurotransmitter glutamate. These tetrameric receptors have transmembrane loops instead of helices, forming an ion-conducting pore.
  • Lastly, the 'ATP-gated' P2X channels consist of cation-permeable ligand-gated ion channels that open on the binding of ATP. They are trimeric receptors having two transmembrane domains per subunit. They are vital in physiological processes like heart and skeletal muscle contraction and pain mediation.

Clinical relevance

In the case of Alzheimer's disease, the treatment that involves cholinesterase inhibitors prevents the breakdown of the neurotransmitter acetylcholine and prolongs its circulation, helping to improve cognitive functions. Treatment with glutamate receptor antagonists, like memantine, helps manage the memory loss and brain damage associated with the disease. Here, the antagonist binds to the ligand site of the neurotransmitter glutamate, stopping the influx of calcium ions and thereby preventing nerve damage due to prolonged cell excitability. The uncompetitive nature of this antagonist allows the site of communication between two nerve cells (the synapses) to activate during the physiological release of glutamate. This leads to improved cognition and can enable patients to carry out daily activities.

タグ

Ligand gated Ion ChannelsTransmembrane ProteinsNeurotransmitter BindingGABA ReceptorHyperpolarizationSedative EffectsCys loop SubfamilyNicotinic Acetylcholine ReceptorsIonotropic Glutamate ReceptorsNMDA ReceptorAMPA ReceptorATP gated ChannelsCholinesterase InhibitorsAlzheimer s DiseaseGlutamate Receptor Antagonists

章から 4:

article

Now Playing

4.5 : Ligand-Gated Ion Channel Receptor: Gating Mechanism

薬力学

2.0K 閲覧数

article

4.1 : 薬物作用の原則

薬力学

5.6K 閲覧数

article

4.2 : 薬物作用の標的:概要

薬力学

5.9K 閲覧数

article

4.3 : シグナル伝達:概要

薬力学

8.1K 閲覧数

article

4.4 : トランスデューサーメカニズム:Gタンパク質共役受容体

薬力学

1.7K 閲覧数

article

4.6 : トランスデューサーメカニズム:酵素結合受容体

薬力学

2.3K 閲覧数

article

4.7 : トランスデューサーメカニズム:核内受容体

薬力学

1.2K 閲覧数

article

4.8 : 用量反応関係:概要

薬力学

2.8K 閲覧数

article

4.9 : 用量反応関係:効力と効能

薬力学

4.1K 閲覧数

article

4.10 : 用量反応関係:選択性と特異性

薬力学

6.2K 閲覧数

article

4.11 : 治療指数

薬力学

4.0K 閲覧数

article

4.12 : 薬物-受容体相互作用:アゴニスト

薬力学

2.3K 閲覧数

article

4.13 : 薬物-受容体相互作用:アンタゴニスト

薬力学

2.6K 閲覧数

article

4.14 : 薬物の複合効果:拮抗作用

薬力学

8.1K 閲覧数

article

4.15 : 薬物の複合効果:シナジー

薬力学

3.6K 閲覧数

See More

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved