サインイン

Tension is a force along the length of a medium, in particular, a force carried by a flexible medium, such as a rope or cable. The word "tension" comes from Latin, meaning "to stretch". Not coincidentally, the flexible cords that carry muscle forces to other parts of the body are called tendons. Any flexible connector, such as a string, rope, chain, wire, or cable, can exert pull only parallel to its length; so, a force carried by a flexible connector is a tension with a direction parallel to the connector. It is important to understand that tension is a pull in a connector. Consider the saying "you can't push a rope"; tension force only pulls outward along the two ends of a rope.

Flexible connectors are often used to transmit forces around corners, such as in a hospital traction system, a finger joint, or a bicycle brake cable. If there is no friction, the tension is transmitted undiminished. Only its direction changes, and it is always parallel to the flexible connector. For instance, tendons in the finger carry force from the muscles to other parts of the finger, usually changing the force's direction but not its magnitude. The tendons are relatively friction-free. Similarly, a brake cable on a bicycle carries the tension from the handlebars to the brake mechanism. Again, the direction, but not the magnitude, of the tension force is changed.

タグ
TensionForceFlexible MediumRopeCableTendonsConnectorsPullFrictionTransmissionDirectionMuscle ForcesTraction SystemBicycle Brake Cable

章から 6:

article

Now Playing

6.10 : Tension

ニュートンの運動の法則の応用

8.5K 閲覧数

article

6.1 : 第一法則:一次元平衡の粒子

ニュートンの運動の法則の応用

6.5K 閲覧数

article

6.2 : 第一法則:二次元平衡の粒子

ニュートンの運動の法則の応用

4.8K 閲覧数

article

6.3 : 第二法則:同じ力の下での運動

ニュートンの運動の法則の応用

5.0K 閲覧数

article

6.4 : 第二法則:同じ加速度の下での運動

ニュートンの運動の法則の応用

5.4K 閲覧数

article

6.5 : 摩擦力

ニュートンの運動の法則の応用

6.1K 閲覧数

article

6.6 : 静的摩擦力と運動摩擦力

ニュートンの運動の法則の応用

12.4K 閲覧数

article

6.7 : 円運動のダイナミクス

ニュートンの運動の法則の応用

12.9K 閲覧数

article

6.8 : 円運動のダイナミクス:アプリケーション

ニュートンの運動の法則の応用

7.4K 閲覧数

article

6.9 : 抗力と終末速度

ニュートンの運動の法則の応用

2.0K 閲覧数

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved