サインイン

As with waves on a string, the speed of sound or a mechanical wave in a fluid depends on the fluid's elastic modulus and inertia. The two relevant physical quantities are the bulk modulus and the density of the material. Indeed, it turns out that the relationship between speed and the bulk modulus and density in fluids is the same as that between the speed and the Young's modulus and density in solids.

The speed of sound in fluids can be derived by considering a mechanical wave propagating longitudinally along a medium and by using the gauge pressure expression along with the impulse-momentum theorem.

The expression is valid for liquids as well as gases. In gases, an additional understanding of how the mechanical wave travels, along with the properties of gases, is used to derive an expression in terms of the temperature of the gas. The assumption here is that the propagation of sound waves happens so fast that it is adiabatic. This is because the compressed and rarefied gas elements do not have enough time to exchange heat with their surrounding elements.

タグ
Speed Of SoundMechanical WaveFluid DynamicsElastic ModulusInertiaBulk ModulusDensityYoung s ModulusImpulse momentum TheoremGauge PressureAdiabatic ProcessSound Wave PropagationGas Properties

章から 17:

article

Now Playing

17.6 : Deriving the Speed of Sound in a Liquid

433 閲覧数

article

17.1 : 音波

7.1K 閲覧数

article

17.2 : 圧力波としての音

1.0K 閲覧数

article

17.3 : 音波の知覚

4.4K 閲覧数

article

17.4 : 固体および液体中の音速

2.7K 閲覧数

article

17.5 : ガス中の音速

2.8K 閲覧数

article

17.7 : 音の強度

4.0K 閲覧数

article

17.8 : 音の強度レベル

4.0K 閲覧数

article

17.9 : 音波の強度と圧力

974 閲覧数

article

17.10 : 音波:干渉

3.6K 閲覧数

article

17.11 : 干渉: パス長

1.2K 閲覧数

article

17.12 : 音波:共鳴

2.5K 閲覧数

article

17.13 : ビート

436 閲覧数

article

17.14 : ドップラー効果 - I

3.4K 閲覧数

article

17.15 : ドップラー効果 - II

3.3K 閲覧数

See More

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved