JoVE Logo

サインイン

5.16 : Gravimetry: Inorganic And Organic Precipitating Agents

In gravimetry, the precipitant is chosen carefully to obtain a pure solid that can be easily filtered. Common inorganic precipitants can be used to determine several cations and anions. In some cases, the formation of the same precipitate can be used to determine the cation and the anion. For example, the reaction of barium and chromate ions to give barium chromate is used to determine both barium and chromate. However, precipitates such as hydroxides, oxalates, and metal ammonium phosphates are first converted to a weighable form. Precipitation methods can also be applied to determine organic functional groups such as organic halides, carbonyl, alkoxy groups, aromatic nitro, azo, and phosphate.

Organic precipitants are usually more selective than their inorganic counterparts and yield sparingly soluble precipitates with high molecular masses. A small number of analyte ions will yield a large amount of precipitate. For example, sodium tetraphenylborate is a near-specific precipitant for potassium and ammonium ions, yielding ionic precipitates. Several organic precipitants contain multiple functional groups that can bond with the cation to generate five- or six-membered rings called chelates. Typical chelating agents include 8-hydroxyquinoline and cupferron.

タグ

GravimetryInorganic PrecipitantsOrganic PrecipitantsPrecipitation MethodsCationsAnionsBarium ChromateHydroxidesOxalatesChelating AgentsSodium TetraphenylborateFunctional GroupsSparingly Soluble PrecipitatesChelates

章から 5:

article

Now Playing

5.16 : Gravimetry: Inorganic And Organic Precipitating Agents

Complexometric Titration, Precipitation Titration, and Gravimetry

1.1K 閲覧数

article

5.1 : Complexometric Titration: Overview

Complexometric Titration, Precipitation Titration, and Gravimetry

5.8K 閲覧数

article

5.2 : Complexometric Titration: Ligands

Complexometric Titration, Precipitation Titration, and Gravimetry

878 閲覧数

article

5.3 : Properties of Organometallic Compounds

Complexometric Titration, Precipitation Titration, and Gravimetry

925 閲覧数

article

5.4 : EDTA: Chemistry and Properties

Complexometric Titration, Precipitation Titration, and Gravimetry

1.7K 閲覧数

article

5.5 : EDTA: Conditional Formation Constant

Complexometric Titration, Precipitation Titration, and Gravimetry

708 閲覧数

article

5.6 : EDTA: Auxiliary Complexing Reagents

Complexometric Titration, Precipitation Titration, and Gravimetry

528 閲覧数

article

5.7 : EDTA: Direct, Back-, and Displacement Titration

Complexometric Titration, Precipitation Titration, and Gravimetry

2.3K 閲覧数

article

5.8 : EDTA: Indirect and Alkalimetric Titration

Complexometric Titration, Precipitation Titration, and Gravimetry

803 閲覧数

article

5.9 : Complexometric EDTA Titration Curves

Complexometric Titration, Precipitation Titration, and Gravimetry

756 閲覧数

article

5.10 : Effects of EDTA on End-Point Detection Methods

Complexometric Titration, Precipitation Titration, and Gravimetry

241 閲覧数

article

5.11 : Masking and Demasking Agents

Complexometric Titration, Precipitation Titration, and Gravimetry

2.3K 閲覧数

article

5.12 : Precipitation Titration: Overview

Complexometric Titration, Precipitation Titration, and Gravimetry

5.4K 閲覧数

article

5.13 : Precipitation Titration Curve: Analysis

Complexometric Titration, Precipitation Titration, and Gravimetry

1.0K 閲覧数

article

5.14 : Precipitation Titration: Endpoint Detection Methods

Complexometric Titration, Precipitation Titration, and Gravimetry

1.6K 閲覧数

See More

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved