JoVE Logo

サインイン

15.7 : Problem Solving: Energy in Simple Harmonic Motion

Simple harmonic motion (SHM) is a type of periodic motion in time and position, in which an object oscillates back and forth around an equilibrium position with a constant amplitude and frequency. In SHM, there is a continuous exchange between the potential and kinetic energy, which results in the oscillation of the object.

Consider the spring in a shock absorber of a car. The spring attached to the wheel executes simple harmonic motion while the car is moving on a bumpy road. The force on the spring is conservative, and the potential energy is stored when the spring is extended or compressed. In this case, the wheel attached to the spring oscillates in one dimension, with the force of the spring acting parallel to the motion. At the equilibrium position, the potential energy stored in the spring is zero. If there are no dissipative forces, the total energy is the sum of the potential energy and the kinetic energy and is expressed as follows:

Equation1

The total energy in simple harmonic motion remains conserved for the system at every point during the motion and is proportional to the square of the amplitude.

The total energy equation in simple harmonic motion presents a useful relationship between velocity, position, and total mechanical energy. This equation can be used if the problem requires a relation between position, velocity, and acceleration without reference to time. Since the energy conservation equation involves displacement and velocity, one must infer the signs of the displacement and velocity from the situation. For instance, if the body moves from the equilibrium position toward the point of the greatest positive displacement, the displacement and velocity are positive.

Studying the energy in simple harmonic motion is vital for understanding the behavior of oscillating systems in physics and engineering.

タグ

Simple Harmonic MotionSHMPeriodic MotionOscillationEquilibrium PositionAmplitudeFrequencyPotential EnergyKinetic EnergyConservative ForceEnergy ConservationTotal Mechanical EnergyDisplacementVelocityOscillating Systems

章から 15:

article

Now Playing

15.7 : Problem Solving: Energy in Simple Harmonic Motion

振動

1.2K 閲覧数

article

15.1 : シンプルハーモニックモーション

振動

9.4K 閲覧数

article

15.2 : 単純調和運動の特徴

振動

12.7K 閲覧数

article

15.3 : 平衡位置に関する振動

振動

5.3K 閲覧数

article

15.4 : 単純調和運動のエネルギー

振動

8.9K 閲覧数

article

15.5 : スプリングマスシステムの周波数

振動

5.4K 閲覧数

article

15.6 : 単純な調和運動と均一な円運動

振動

4.2K 閲覧数

article

15.8 : シンプル振り子

振動

4.6K 閲覧数

article

15.9 : ねじり振り子

振動

5.4K 閲覧数

article

15.10 : 物理的な振り子

振動

1.6K 閲覧数

article

15.11 : 重力による加速度の測定

振動

535 閲覧数

article

15.12 : 減衰振動

振動

5.7K 閲覧数

article

15.13 : ダンピングの種類

振動

6.4K 閲覧数

article

15.14 : 強制振動

振動

6.5K 閲覧数

article

15.15 : 共鳴の概念とその特性

振動

5.0K 閲覧数

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved