The action potential is a complex electrical event that occurs in excitable cells, such as neurons and muscle cells. It consists of several distinct phases, each with specific characteristics.

Resting Phase:

In this phase, the cell's membrane is at its resting potential, typically around -70 millivolts (mV) for neurons. Inside the cell, there is a higher concentration of potassium ions (K+) and a lower concentration of sodium ions (Na+). Voltage-gated sodium channels are closed, and voltage-gated potassium channels are closed but capable of opening.

Depolarization Phase:

A graded potential, often an excitatory postsynaptic potential (EPSP), reaches the threshold level (typically around -55 mV). This triggers the voltage-gated sodium channels to open rapidly, allowing an influx of sodium ions into the cell. This rapid sodium influx causes a sharp increase in membrane potential, turning it more positive. The influx of sodium ions further depolarizes the membrane, leading to a positive feedback loop that triggers more sodium channels to open.

Peak of the Action Potential:

At the peak of the action potential, the sodium channels begin to inactivate or close, reducing sodium influx. Voltage-gated potassium channels start to open slowly in response to the increasing membrane potential.

Repolarization Phase:

As voltage-gated potassium channels open fully, potassium ions exit the cell. This movement of positively charged ions out of the cell helps to restore the negative membrane potential. The membrane potential gradually returns to the resting potential of around -70 mV.

Hyperpolarization Phase (Undershoot):

The movement of potassium ions continues for a brief period, causing the membrane potential to dip below the resting potential, typically around -80 mV. The delayed closure of some potassium channels contributes to this temporary hyperpolarization.

Refractory Period:

During and immediately after an action potential, it is impossible to trigger another one. This prevents the action potential from moving backward. This is called the absolute refractory period.

Following the absolute refractory period, it is possible to initiate another action potential, but it requires a stronger stimulus than usual. This is known as the relative refractory period.

The phases of an action potential are essential for transmitting electrical signals in neurons. This rapid and coordinated sequence of events allows for the unidirectional propagation of signals along the length of the neuron, enabling communication within the nervous system and with other cells.

タグ
Action PotentialPhases Of StimulationResting PhaseDepolarization PhasePeak Action PotentialRepolarization PhaseHyperpolarization PhaseRefractory PeriodSodium Ions NaPotassium Ions KVoltage gated ChannelsExcitatory Postsynaptic Potential EPSPMembrane Potential

章から 16:

article

Now Playing

16.17 : Action Potential: Phases of Stimulation

神経系と神経組織

3.8K 閲覧数

article

16.1 : 神経系の組織

神経系と神経組織

3.1K 閲覧数

article

16.2 : 神経系の機能分割

神経系と神経組織

2.9K 閲覧数

article

16.3 : 神経系の機能

神経系と神経組織

2.1K 閲覧数

article

16.4 : ニューロン:細胞体と樹状突起

神経系と神経組織

1.6K 閲覧数

article

16.5 : ニューロン:軸索

神経系と神経組織

2.2K 閲覧数

article

16.6 : 神経組織:ニューロンの種類

神経系と神経組織

1.4K 閲覧数

article

16.7 : 神経組織:グリア細胞

神経系と神経組織

1.6K 閲覧数

article

16.8 : 神経組織:ミエリン

神経系と神経組織

1.6K 閲覧数

article

16.9 : 電気化学的グラジエントとチャネルタンパク質:概要

神経系と神経組織

1.2K 閲覧数

article

16.10 : リガンド依存性イオンチャネル

神経系と神経組織

1.0K 閲覧数

article

16.11 : 電位依存性イオンチャネル

神経系と神経組織

1.0K 閲覧数

article

16.12 : メカニカルゲートイオンチャネル

神経系と神経組織

527 閲覧数

article

16.13 : 安静時膜電位

神経系と神経組織

1.4K 閲覧数

article

16.14 : 静止電位減衰

神経系と神経組織

546 閲覧数

See More

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved