The neural regulation of blood pressure involves intricate interactions between the autonomic nervous system (ANS) and cardiovascular system, ensuring adequate perfusion of tissues. This regulation primarily occurs through baroreceptor and chemoreceptor reflexes, involving both short-term and long-term mechanisms.

Baroreceptor Reflex

Baroreceptors, located in the carotid sinuses and aortic arch, detect changes in blood pressure. When blood pressure rises, these stretch-sensitive receptors increase their firing rate, sending signals to the cardiovascular center in the medulla oblongata. The medulla integrates this information and activates the parasympathetic nervous system (PNS) while inhibiting the sympathetic nervous system (SNS). Increased PNS activity slows the heart rate (negative chronotropy) and decreases cardiac contractility (negative inotropy), reducing cardiac output and lowering blood pressure. Conversely, a drop in blood pressure reduces baroreceptor firing, leading to decreased PNS activity and increased SNS activity, causing vasoconstriction, increased heart rate, and elevated cardiac output to restore blood pressure.

Chemoreceptor Reflex

Chemoreceptors, located in the carotid and aortic bodies, respond to changes in blood chemistry, such as hypoxia, hypercapnia, and acidosis. These receptors send signals to the medulla, which then adjusts respiratory and cardiovascular responses. In response to hypoxia, the SNS is activated, increasing heart rate and vasoconstriction to enhance oxygen delivery to tissues.

Central Nervous System

Higher brain centers, such as the hypothalamus, also play a role in blood pressure regulation. Emotional responses and stress can trigger the hypothalamus to influence the medulla, modulating ANS activity. Chronic stress may lead to sustained SNS activation, contributing to hypertension.

Renin-Angiotensin-Aldosterone System (RAAS)

Although primarily a hormonal mechanism, the RAAS is influenced by neural inputs. Sympathetic stimulation promotes renin release from the kidneys, initiating the RAAS cascade. Angiotensin II, a potent vasoconstrictor, and aldosterone, which increases sodium and water retention, both elevate blood pressure.

Understanding these neural mechanisms is crucial for managing conditions like hypertension and syncope, highlighting the importance of integrative approaches in cardiovascular health.

タグ
Neural RegulationBlood PressureAutonomic Nervous SystemCardiovascular SystemBaroreceptor ReflexChemoreceptor ReflexMedulla OblongataParasympathetic Nervous SystemSympathetic Nervous SystemVasoconstrictionRenin angiotensin aldosterone SystemHypertensionCardiovascular Health

章から 24:

article

Now Playing

24.16 : Neural Regulation of Blood Pressure

血管と循環

1.9K 閲覧数

article

24.1 : 血管の概要

血管と循環

1.8K 閲覧数

article

24.2 : 血管の構造

血管と循環

1.5K 閲覧数

article

24.3 : 動脈と細動脈

血管と循環

1.3K 閲覧数

article

24.4 : 毛細血管とその種類

血管と循環

1.1K 閲覧数

article

24.5 : キャピラリーベッド

血管と循環

1.4K 閲覧数

article

24.6 : 静脈

血管と循環

296 閲覧数

article

24.7 : 循環器

血管と循環

1.3K 閲覧数

article

24.8 : 血液の貯蔵庫としての静脈

血管と循環

1.3K 閲覧数

article

24.9 : 吻合

血管と循環

380 閲覧数

article

24.10 : 血圧

血管と循環

2.0K 閲覧数

article

24.11 : 血管抵抗

血管と循環

2.0K 閲覧数

article

24.12 : 血圧の測定

血管と循環

400 閲覧数

article

24.13 : 静脈リターン

血管と循環

1.4K 閲覧数

article

24.14 : 脈拍

血管と循環

253 閲覧数

See More

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved