The movement of a rigid object can be understood through the equations that explain both translational and rotational motion about the center of mass of the object, point G. This center of mass is the point where the equation of motion for translational motion comes into play, as per Newton's Second Law.

The combined moments generated about the center of mass of the object are equal to the rate of change of the angular momentum of the body. An external force, when applied at a different point other than the center of mass of the object, causes the body to rotate and generates a moment.

The angular momentum of this point is articulated as a vector product, incorporating its relative position and velocity with respect to the center of mass of the object. The derivative of angular momentum with respect to time provides us with the moment generated at a point where an external force is applied. By summing the moments of all points within the rigid body, one can calculate the total moment of the system about the center of mass of the object.

タグ
Equation Of MotionRigid BodyTranslational MotionRotational MotionCenter Of MassNewton s Second LawAngular MomentumExternal ForceVector ProductMoment CalculationSystem Dynamics

章から 16:

article

Now Playing

16.8 : Equation of Motion for a Rigid Body

剛体の 3 次元運動学

164 閲覧数

article

16.1 : モーメントと慣性積

剛体の 3 次元運動学

272 閲覧数

article

16.2 : イナーシャテンソル

剛体の 3 次元運動学

180 閲覧数

article

16.3 : 任意の軸の周りの慣性モーメント

剛体の 3 次元運動学

167 閲覧数

article

16.4 : 任意の軸の周りの角運動量

剛体の 3 次元運動学

115 閲覧数

article

16.5 : 角運動量と慣性主軸

剛体の 3 次元運動学

123 閲覧数

article

16.6 : インパルスとモーメントの原理

剛体の 3 次元運動学

87 閲覧数

article

16.7 : 剛体の運動エネルギー

剛体の 3 次元運動学

123 閲覧数

article

16.9 : オイラー運動方程式

剛体の 3 次元運動学

130 閲覧数

article

16.10 : トルクフリーモーション

剛体の 3 次元運動学

344 閲覧数

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved