A drug's nonlinear kinetics can be influenced by a diverse range of transporter proteins that serve as crucial players in drug distribution. These transporters, found within cells, can enhance or reduce local drug concentrations by facilitating the influx or efflux of drugs. For instance, the expression of xenobiotic transporters can be influenced by factors such as age and gender, potentially impacting the linearity of drug response.

Polymorphisms occurring in drug transporters can alter pharmacokinetics, affecting drug toxicity and efficacy. The interplay between drug transporters and enzymes in the liver is significant in determining the systemic linearity of drug response. Similarly, in the intestine, ATP-binding cassette and bile acid transporters influence drug absorption, bioavailability, and the linearity of absorption.

Various organic anion and cation drug transporters in the kidney can significantly alter the linearity of systemic drug elimination. Additionally, breast cancer resistance proteins are instrumental in drug linearity and require careful consideration when establishing dosing strategies in cancer therapy.

Moreover, drug-drug interactions involving transporters can potentially disrupt clinical relevance, pharmacokinetics, pharmacodynamics, and toxicity, shifting from linear to nonlinear kinetics. The abundant presence of organic anion and cation drug transporters in the kidney also contributes to alterations in the linearity of systemic drug elimination.

Furthermore, P-glycoprotein, a multidrug resistance protein, plays a pivotal role in determining drug concentration within cells, exerting a considerable influence on pharmacokinetic linearity. Mammalian oligopeptide transporters also contribute significantly to drug absorption and distribution, impacting drug linearity.

Overall, understanding the impact of transporters on pharmacokinetics is essential for optimizing drug dosing, improving safety, and enhancing efficacy. By understanding the intricate mechanisms through which transporters modulate drug kinetics, healthcare professionals can make informed decisions to maximize therapeutic outcomes.

章から 8:

article

Now Playing

8.12 : Nonlinear Pharmacokinetics: Role of Transporters

Nonlinear Pharmacokinetics

8 閲覧数

article

8.1 : 非線形薬物動態:概要

Nonlinear Pharmacokinetics

69 閲覧数

article

8.2 : 非線形薬物動態:非線形性の原因

Nonlinear Pharmacokinetics

21 閲覧数

article

8.3 : 非線形薬物動態:Michaelis-Menten方程式

Nonlinear Pharmacokinetics

28 閲覧数

article

8.4 : Michaelis定数および最大排泄率の決定

Nonlinear Pharmacokinetics

13 閲覧数

article

8.5 : 非線形薬物動態:IVボーラス注射のための薬物排除

Nonlinear Pharmacokinetics

7 閲覧数

article

8.6 : 1コンパートメントモデルとしての薬物分布と非線形薬物動態による排除:概要

Nonlinear Pharmacokinetics

9 閲覧数

article

8.7 : 非線形除去に影響を与えるパラメータ: ゼロ次入力、1次吸収、および 2 コンパートメント モデル

Nonlinear Pharmacokinetics

8 閲覧数

article

8.8 : 非線形薬物動態:排泄半減期と用量クリアランスの依存性

Nonlinear Pharmacokinetics

10 閲覧数

article

8.9 : 時間薬物動態:概日リズムと薬物反応への影響

Nonlinear Pharmacokinetics

22 閲覧数

article

8.10 : 時間依存性薬物動態:時間依存性薬物動態

Nonlinear Pharmacokinetics

26 閲覧数

article

8.11 : 非線形薬物動態:バイオアベイラビリティとタンパク質-薬物結合

Nonlinear Pharmacokinetics

35 閲覧数

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved