MATLAB stands for Matrix Laboratory. MathWorks developed MATLAB as a multi-paradigm numerical computing environment and proprietary programming language. It has evolved significantly over the years to become a tool utilized by engineers, scientists, and mathematicians for various tasks, including matrix calculations, developing algorithms, data analysis, and visualization. MATLAB's applications span various industries and disciplines. It's used in image and signal processing, communications, control systems design, test and measurement, financial modeling and analysis, and computational biology. More specifically, in the academic world, it's a standard tool for teaching and research in mathematics, engineering, and science. Its key components include:

  1. MATLAB language: A high-level matrix or array language with control flow statements, functions, data structures, input/output, and object-oriented programming features.
  2. MATLAB working environment: This consists of tools and facilities for managing the workspace variables and importing and exporting data. It also includes tools to develop, manage, debug, and profile MATLAB files.
  3. Handle Graphics: The MATLAB graphics system involves high-level commands for 2D and 3D data visualization, image processing, animation, and presentation graphics.
  4. Mathematical Function Library: This is a vast computational algorithm library containing elementary functions like sum, sine, and cosine, complex arithmetic, and more sophisticated functions such as matrix inverse, matrix eigenvalues, Bessel functions, and fast Fourier transforms.
  5. MATLAB API (Application Program Interface): This allows users to write programs that interact with MATLAB.

Its advantages include its ease of use, application versatility, availability of numerous toolboxes for specific applications, and a vast community of users and contributors. In contrast, its disadvantages include its cost, as it is proprietary software, potential performance issues for large-scale computational tasks, and the fact that it might not be the best tool for every programming or data analysis task.

章から 16:

article

Now Playing

16.7 : Introduction to MATLAB

Statistical Softwares

40 閲覧数

article

16.1 : データ分析および臨床試験のための統計ソフトウェア

Statistical Softwares

140 閲覧数

article

16.2 : データ分析ツールとしての Microsoft Excel の概要

Statistical Softwares

93 閲覧数

article

16.3 : MS-Excel関数を使用した簡単なデータ分析の実行

Statistical Softwares

65 閲覧数

article

16.4 : 社会科学統計パッケージ(SPSS)

Statistical Softwares

80 閲覧数

article

16.5 : Rの概要

Statistical Softwares

118 閲覧数

article

16.6 : 統計分析システム(SAS)

Statistical Softwares

29 閲覧数

article

16.8 : Minitabの概要

Statistical Softwares

33 閲覧数

article

16.9 : エコノメトリックビュー(EViews)

Statistical Softwares

52 閲覧数

article

16.10 : スタッツグラフィックス

Statistical Softwares

49 閲覧数

article

16.11 : Microsoft Excel: 中心傾向、偏在、尖度の検出

Statistical Softwares

47 閲覧数

article

16.12 : Microsoft Excel:平均値、SD、SEのプロット

Statistical Softwares

41 閲覧数

article

16.13 : Microsoft Excel: 中央値、四分位範囲、およびボックス プロット

Statistical Softwares

39 閲覧数

article

16.14 : Microsoft Excel: ピアソンの相関関係

Statistical Softwares

58 閲覧数

article

16.15 : Microsoft Excel: 回帰分析

Statistical Softwares

137 閲覧数

See More

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved