Method Article
ここでは、エージング中規制またはゲノムDNAの不安定性に寄与する遺伝子/経路を研究するために酵母の時系列の寿命モデルと組み合わせることができるDNAの突然変異試験のセットを説明します。
Saccharomyces cerevisiaeの老化モデルを用いた研究は、部分的に高等真核生物1-2に保存されている寿命調節経路を明らかにしました。酵母老化モデルのシンプルさとパワーは、DNA損傷とゲノム維持だけでなく、老化の間に病気への貢献を研究するために調べることができます。ここで、我々は単純なDNAで酵母の時系列の寿命を組み合わせることにより、塩基置換、フレームシフト変異、総染色体再配列、および相同/ homeologous組換えだけでなく、核DNA修復活性を含め、年齢依存性のDNA変異を研究するためにシステムを説明損傷と突然変異試験。ここで説明する方法は、ゲノムの不安定性と哺乳類では年齢依存性DNAの変異と癌の根底にあるメカニズムを制御する遺伝子/経路の同定を容易にしてください。
二つの寿命モデルはS.で老化研究に使用されている出芽酵母 :RLSとCLS。複製(出芽)寿命(RLS)は、酵母の母細胞が分裂3-6の有限数を受けるという観察に基づいています。我々は、時系列の寿命(CLS)、文化やプレート7-11非分裂酵母の時系列の生存に基づいて、モデルに焦点を当てます。野生型の酵母が合成ブドウ糖完全な(SDC)培地で10-12時間に対して指数関数的に増大。血糖値が減少すると、発酵から呼吸への酵母のスイッチは、プロセスがdiauxicシフトと呼ば。細胞がG 0逮捕に入る前に約48時間後にdiauxic段階で徐々に分裂し続ける。細胞の代謝率は、一日5-6(0日目は接種の日です)まで高いままである。時間をかけて細胞の生存率は、G 0逮捕し、フォームのリッチYPEDプレート上のコロニーを終了することができる2日おきにサンプリングされた年代順に老化細胞の割合は、、でアクセスすることができます。
1。液体培養の酵母系列寿命(CLS)
その場生死判別試験でのバリエーションが含まれています:
(2) その場生死判別試験で
液体培養では、生存細胞のごく一部は、細胞周期を再入力し、残りの栄養素や、これらのリリースフォームを利用して成長することが、培地中に再生/ 13あえぎと呼ばれる表現型を死細胞を溶解した。我々は、再生/あえぎ問題を回避し、また酵母の様々な外部の栄養素や刺激の一定の曝露または剥奪の効果をテストできるようにDBY746株(TRP1)の栄養要求性を利用する可能性オンプレートシステムを開発CLS 11。 その場生死判別試験でこれがまた、細胞が絶えず寿命の分析の間、豊富な栄養素にさらされているような複製寿命のモデルを模倣しています。
その場生死判別試験でのバリエーションが含まれています:
3。経時的老化時のDNA損傷と変異の頻度
カナバニン耐性(できるR)とCAN1シーケンシング
自然突然変異の頻度は、年代順に老化の文化でカナバニン耐性(できるR)の周波数を測定することによって評価することができます。血漿アルギニンパーミアーゼをコードCAN1(YEL063)遺伝子の変異、異なるタイムポイントで収集されたアルギニンアナログL - canavanine.Can rのコロニーへの耐性細胞をレンダリングも、ゲノムDNAとCAN1のその後のシーケンスの抽出のために保存することができます。突然変異のスペクトルデータ(変異のサーベイと、SoftGenetics)を提供することができる遺伝子、。
塩基置換(TRP + reversions)
TRP1 - 289と株はTRP1コード配列のアンバー変異(C403T)を含んでいます。のTrp +復帰15〜TRP1 - 289の周波数の測定は、酵母の時系列のエージング中に塩基置換率の推定が可能になります。
フレームシフト突然変異
Lysの-ひずみEH150は(MATA、lys2ΔBglII、TRP1 -Δ、HIS3 -Δ200、URA3 - 52、ADE2 - 1O)LYS2遺伝子のBgl IIで制限酵素サイトを作成するために4個のヌクレオチドを挿入することにより構築されたlys2ΔBglIIの突然変異を庇護する。小さ な挿入/欠失変異を16から17を逆転させることができますリジンの栄養要求性のオープンリーディングフレームの結果の結果4シフト。
総染色体再配列(GCRs)
総染色体再配列(GCRs)を検出するために、我々は、冗長性の高いヘキソース輸送体をコードし、HXT13(YEL069)これで、変異株を生成URA3カセット18によって中断されました。HXT13は、染色体V.突然変異でCAN1にテロメア7.5キロバイトを置かれているCAN1とURA3遺伝子の両方で、それぞれ、L -カナバニンと5 -オロオロ酸(5FOA)に細胞の抵抗性をレンダリングする。両遺伝子に起こる点突然変異の低周波数を考慮し、できるR 5FOA rの周波数の解析では、両遺伝子の喪失の結果そのGCRsの推定を提供します。
相同とhomeologous組換え
(pSR406に100%相同インバーテッドリピート(IRS)のどちらかを運ぶ:経時的老化の間に相同性のレベル(100%)とhomeologous組換え(91%)を監視するために、我々は、線形化されたプラスミドの変異(イントロン- IR - URA3:HIS3)を生成)またはHIS3遺伝子座19でのIR homeologous 91%(pSR407)。機関リポジトリとの間の組換えは、機能HIS3タンパク質の発現を可能にする。
その場生死判別試験での相補的な、年齢依存性のTrp +復帰、リジン+フレームシフト突然変異、組換え、またはできるRは、プレート上に歳の細胞で検討することができます。
4。 Translesion合成(TLS)
年齢依存性突然変異頻度の増加は、高分子の損傷、減少した細胞保護/修復にかかわって、エージング中誤ったDNA修復を(そのようなPolζ依存translesion合成、TLSなど)を増加することがあります。例えば、長寿命のsch9Δ変異体は、SOD2に高い発現を示す、エラーが発生しやすいDNA修復酵素Rev1は 20の発現を減少させた。ここでは、in vitroで TLSを評価するために損傷したDNAをテンプレートと全体の核抽出物を組み合わせたアッセイを説明します。
5。代表的な結果
我々は通常、標準的な液体CLSの分析で100%の生存率として3日目のCFUカウントを使用する。その後の日の割合で生存率が平均値(50%生存)と最大値を計算するために装着することができる(10%生存)の生活は12に及びます。 その場生死判別試験でから得られた寿命の結果は、一般的に液体CLSアッセイを使用してされたものと一致していますが、とは、一部の細胞は絶えず栄養素にさらされているという事実に起因して、平均寿命を、減少させた。このようなMsn2 / 4とGis1 12などのストレス応答転写因子の減少トランスで示したようにグルコースの存在は、細胞の保護の活性を阻害する。
年齢依存性変異の頻度が大幅にひずみ背景、遺伝子操作、培養条件、および年齢によって異なります。表2は、野生型株(DBY746)で得られた典型的な結果を示しています。
コンポーネント | G / L |
---|---|
D -グルコース | 20 |
アンモニウムの硫酸 | 5 |
窒素ベース(-AS/-AA) | 1.8 |
リン酸二水素ナトリウム | 1.4 |
mg / Lの | |
アデニン | 80 |
L -アルギニン | 40 |
L -アスパラギン酸 | 100 |
L -グルタミン酸 | 100 |
L -ヒスチジン | 80 |
L -イソロイシン | 60 |
L -ロイシン | 120 |
L -リジン | 60 |
L -メチオニン | 80 |
L -フェニルアラニン | 60 |
L -セリン | 400 |
L -スレオニン | 200 |
L -トリプトファン | 80 |
L -チロシン | 40 |
L -バリン | 150 |
ウラシル | 80 |
表1。合成完全なグルコース培地、SDC(NaOHでpH6.0に調整)。ヒスチジンの4倍過剰、ロイシン、トリプトファン、およびウラシルはDBY746株の栄養要求性を補うために含まれています。
3日目(平均± SEM) | まで(エージング中) | |
---|---|---|
rができます | 1.76 ± 0.12 × 10 -6 | 6から8 × 10 -6 |
TRP +復帰 | 6.60 ± 1.70 × 10 -8 | 1.60 × 10 -6 |
リジン+フレームシフト突然変異 | 3.00 ± 0.78 × 10 -8 | 0.70 × 10 -6 |
GCRs | 0.62 ± 0.10 × 10 -8 | 0.30 × 10 -6 |
相同組換え | 5.55 ± 2.74 × 10 -6 | 27.00 × 10 -6 |
Homeologous組み換え | 0.12 ± 0.04 × 10 -6 | 0.48 × 10 -6 |
表2。経時的老化の間に、野生型細胞の典型的な変異の周波数(DBY746)。
図1。translesion合成(TLS)20の結果。 3日齢の固定野生型相(DBY746)とsch9Δ変異体細胞から核抽出物を30℃で30分間、破損していないまたは脱塩基部位を含むDNAテンプレートを使用してインキュベートしたTLSの製品は、固体(無傷のテンプレート付き)または点線(損傷したテンプレート付き)の行で示されます。 sch9Δ変異体から核抽出物において観察されたもtranslesion合成はなかった。自由なプライマーは、オープン矢印で示されます。
液体老化の文化はいつか再生/ CLS分析を複雑にあえぎ表現型13を 、示す。人口以上の90から99パーセントが生存能力を失ったときに再生が一般的に発生します。この表現型は、多くの場合、酸化ストレスおよび/または細胞の減少の保護に関連付けられています。例えば、この表現型の頻度は、より多くの細胞質スーパーオキシドジスムターゼを欠く細胞で2倍以上と大幅に長寿命変異体で減少します(例えば、sch9ΔまたはRAS2Δ)または変異体を過剰発現してスーパーオキシドは、22ジスムターゼ。実際には、我々は、経時的老化時の高死亡率の段階で3つの連続したサンプル用実行可能性の実現可能性または安定化の増加として再成長を定義する。
異なるDNAの変異の年齢に依存する周波数が大幅にひずみ背景、遺伝子操作、培養条件、ならびに再生/あえぎと非常に低い生存率に応じて異なります。プレ実験はこのようなperformingtheフルスケールの寿命解析の前に変異の周波数範囲を決定するために突然変異試験のための様々な播種密度と平均値と最大生存などの時点で行ってください。野生型の菌株は、常に、任意の治療や遺伝的変異体と平行に寿命や突然変異の頻度の研究に含まれるべきである間実験-ばらつきが考慮できるように。複数の生物学的なレプリカが研究に含まれるべき、と、液体の両方とその場可能性/突然変異アッセイの結果を裏付けるために実施すべきである。
代わりに組み合わせて複数のアッセイを用いて年齢依存性ゲノム不安定性のプロファイリング、DNAの突然変異の特定のタイプに焦点を当ててから、年齢依存性のゲノム不安定性に寄与する特定のDNA損傷とDNA損傷修復システム(秒)に光を当てることができる。例えば、他のDNAの突然変異のものに比べて総染色体再配列(GCRs)の有意な増加が、、elevationof二重鎖切断および/または酵母中の接合端(NHEJ)非相同の減損を示唆する野生型酵母で観察される経時的老化(表2)。野生型エージング酵母で得られたCAN1突然変異のスペクトルは、(CAN1遺伝子の塩基配列決定)経時的老化とエラーが発生しやすいDNAの修復中に酸化的損傷の増加を示唆し、一方、長寿命のsch9Δ変異体では、以下の酸化的DNA損傷と程度に下げてエラーを起こしやすいtranslesionの合成は、20を観察した。
ここで説明する方法は、さらに年齢依存性のゲノム不安定性を研究するために費やさすることができます。例えば、静止及び非静止期の細胞は、Allenらによって記述された密度勾配法を用いて酵母固定相培養細胞から分離することができます。23。ここで説明する変異のアッセイと組み合わせることで、我々は、年齢依存性の変異の大部分は静止細胞ではなく、分割し、損傷やアポトーシス細胞20,24から生じることが報告されている。
利害の衝突は宣言されません。
我々は、プラスミド、酵母菌株を提供するためのS.ジンクスロバートソンとE ·ハイデンリッヒに感謝、P. PhamさんとMFグッドマンヘルプwiththe TLSアッセイのために。この作品は、エイジング総合研究助成のためのアメリカ連合によっておよびNIH AG20642、AG025135によって、部分的に、サポートされていました。
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved