Method Article
髄膜炎菌は、血管に感染するヒト特異的病原体である。このプロトコルでは、ヒト微小血管は、免疫不全マウスにヒト皮膚を移植することによってマウスに導入される。細菌は、典型的には、ヒトの場合に観察紫斑発疹の血管損傷と発展につながる、人間の血管に広く付着する。
髄膜炎菌は、ヒトの血流に入る重度の、しばしば致命的な敗血症を引き起こす。感染症は、血管漏出、紫斑発疹および最終的な組織壊死の発症をもたらす血管の甚大な被害をもたらす。この感染症の病因を研究する以前にin vivoモデルを困難にして細菌の人間の特異性によって制限されていました。このプロトコルでは、人間の皮膚、皮膚微小血管を含むが、免疫不全のマウスに移植されているこの感染ヒト化モデルについて説明します。それらのヒトの特徴を維持しながら、これらの血管は、マウスの循環に吻合。このモデルでは、Nに導入されると髄膜炎菌は、広範な血管損傷、炎症や紫斑発疹のいくつかのケースでは、開発中で、その結果、人間の血管に独占的に準拠しています。このプロトコルは、コンテでのこのモデルの移植、感染および評価の手順を説明しますNのXT 髄膜炎菌感染症。技術は、血流に感染する多数のヒト特異的病原体に適用することができる。
髄膜炎菌性敗血症は、細菌性病原体、髄膜炎菌によって引き起こされ、頻繁に致命的な血液由来感染症です。以前に細菌や細菌産物1を循環させることによって引き起こされる血管の破壊に関連していた彼らの皮膚に点状出血や紫斑発疹と共に存在しばしば髄膜炎菌性敗血症患者。臨床患者から皮膚生検は、多くの場合、血管2を充填、微細血管に関連する細菌を示しています。離れて細菌から、広範な血栓症、凝固、渋滞や血管漏出はプルプルの地域3〜5に見られる。この血管の損傷は、髄膜炎菌の生存者でのデブリードマンおよび切断で、その結果、皮膚や周囲の組織の広範な壊死が引き起こされ得る。感染はこの血管損傷の原因とどのように理解することは、予防と治療戦略を最適化することが重要である。髄膜炎菌性敗血症の研究の大半は上のin vitroで行われているNの人間の特異性に起因するヒト細胞株髄膜炎菌 。感染の多くの側面は、細菌の接着、宿主細胞応答ならびにサイトカイン応答6-9を含むin vitroで研究されている。 IV型線毛(TFP)は、Nの主要な接着細胞小器官として関与している髄膜炎菌は、上皮細胞および内皮細胞の両方で10。またN.の付着が示されている宿主細胞への髄膜炎菌は、せん断応力に依存し、従って、微小血管11内の血流速度に関連すると考えられている。これは、細菌が生体内で直面する動的応力が病因に重要であるを示唆している。これは、 インビトロで小血管の微小環境をモデル化するが非常に困難である。
ナイセリア Tfpのための接着受容体はまだ不明であり、したがって、動物モデルにおける細菌の付着を達成するノックイン戦略は、現時点で想定することはできない。 CD46はTfpの受容体であることが示唆されたトランスジェニック動物は、マウスモデルとして作用するように作製した。しかし、これらの動物における感染は、大規模な感染につながるものではないか、開発12,13発疹する。 ナイセリア感染菌血症の態様に関して記載されている他の動物モデルは、鉄源14,15として考慮ヒトトランスフェリンのための細菌嗜好を取る。ヒトトランスフェリンを補充するか、長時間にわたって血流中の増加した細菌負荷における導入遺伝子の結果からそれを発現するが、このモデルは、細菌の接着または発疹現像16,17を示していないのいずれか。
このプロトコルでは、皮膚の微小血管系を含むヒトの皮膚は、免疫不全マウス18,19に移植されたヒト化マウスモデルを記載している。これは、マウスの循環で灌流機能性ヒト血管になる。ヒトトランスフェリン補充と組み合わせることで、このModelはN.ヒトの特定の側面の少なくとも二つを占める生体内環境における髄膜炎菌、すなわち 、ヒト内皮およびヒトトランスフェリン、。N.髄膜炎は 、血管損傷や紫斑発疹の開発18を含む臨床患者で報告されているものに似ている病理を生産する、人間の内皮に特異的に接着し、このモデルに静脈内に導入された。
1。リスクと権限
2。皮膚移植
3。感染
4。犠牲
5。臓器CFU計数
6。組織学/免疫組織化学
CFU計数
N.これらの代表的な結果で使用される髄膜炎菌株は、Nである。にOPC - - 、PilC1 + / PilC2 +20 膜炎 8013クローン12、血清群Cの臨床分離株では、私はSBピリン、オーパクラスを表現する。株は染色体挿入部18から緑色蛍光タンパク質(GFP)を発現するように操作されていた。細菌のコロニー形成単位数を寒天プレート上のコロニーの数を計数し、血液のCFU / mlまたはメッキ既知の容量からの組織のCFU / mgのいずれかを計算することによって確立される。血球数は、5分、10 6 CFUの細菌の静脈注射後に血液中を循環する1.5×10 5 CFU / mLの平均値( 図1A)があったことを示した。 6時間後にカウントが4.8×10 4 CFU / mlの平均。 24時間別の平均数は、4 CFU / mlのX 10 2.4であったが、10匹のマウスのグループで、5は持っていた検出可能な他の5が比較的高いカウント( 図1A)を持っていたが、細菌を循環させる。皮膚サンプルから取られたCFU計数は、6時間および24時間( 図1B)での組織の4.4×10 2 CFU / mgである組織の2.1×10 4 CFU / mgの平均化、人間の皮膚にかなりの数を持つマウスの大部分を示している。反対マウス皮膚試料は、N.のための強い優先性を示す、24時間および6時間で非常に低い数でなく細菌数を示さなかった移植皮膚( 図1B)における人間の血管への髄膜炎 。一般細菌数では2匹の動物は、彼らが高い循環細菌数( 図1C)と相関したように、血液からの汚染に起因する可能性を示してカウントをしたが、サンプリングされた他の臓器で検出不能と非常に低かった。モデルはまた、IV型πを、例えば、 インビボでの病原性因子の役割を決定するために使用することができる李。提案Tfpの「付着因子」を欠いている細菌Tfpのを欠損株をもたらしpilD遺伝子 21において定義された変異を有する株だけでなく、pilC1遺伝子 8は 、モデルに導入した。これらの変異は、TFPは、生体内( 図1D) での接着で再生されている重要な役割を確認し、ヒト皮膚移植片無し細菌の付着が生じた。
免疫組織化学/組織学
これらの実験において、我々は、N.使用二次染色を必要とせずに蛍光検出を可能にするために緑色蛍光タンパク質(GFP)を発現する髄膜炎菌株 。ヒト血管は、ヒト内皮細胞のマーカーのいずれかを用いてCD31(PECAM-1)またはレクチンハリエニシダのハリエニシダ凝集素 (UEA)18,22を染色した。 UEAは、一工程染色( 図2A-C)を可能ローダミンとコンジュゲートした。細胞核を染色することができますDAPIでEDは組織構造( 図2A-B)を識別するのに役立つ。 組織学は、標準的なヘマトキシリン/エオシン染色を用いて行った。皮膚の表皮/真皮境界線は明確に識別した。炎症、血栓症および血管漏出は24時間感染( 図2D)の後に、この国境に近い血管に濃縮した。血栓症は、多くの場合、渋滞や炎症を伴ういくつかの小さな皮膚血管に見えた。組織への赤血球の漏出うち血管損傷の広範なレベルを示す、見ることができた。非感染マウスでの移植皮膚の組織病 理なしに区別炎症18で正常に見えた。感染の約30%において皮膚の細菌の付着は、肉眼で検出可能な紫斑病( 図2Eおよび2F)の開発につながる。
SRC = "/ files/ftp_upload/51134/51134fig1highres.jpg" SRC = "/ files/ftp_upload/51134/51134fig1.jpg" />:FO "5インチ"
図1。 CFUカウントされます。(A)5分、6時間、および24時間後の感染における血液のミリリットル当たりの細菌CFU計数。 (B)細菌CFU 6時間および24時間感染後の両方で、ヒト皮膚(HS)とマウス皮膚(MS)とを比較する皮膚試料からカウントする。 (C)細菌CFUを24時間後に感染を講じ、他の器官からカウントします。野生型N.に感染したマウスから24時間感染後に採取ヒトおよびマウスの皮膚サンプルからの細菌CFUカウントを比較すると(D) 髄膜炎菌 2C43染色(WT)、pilD遺伝子 (pilD)またはpilC1遺伝子 (pilC1)に変異を有する株に変異した株。すべてのグラフは、中央値で生データとして表示されます。図はMelican らから変更されている。18"_blank">拡大画像を表示するにはここをクリックしてください。
図2。真皮(D)表皮(E)の国境に近い、UEAレクチン(赤)で染色したヒト微小血管を示す共焦点スタックの顕微鏡。(A)は、投影。容器は、Nに感染している髄膜炎菌 (緑)2時間後に感染。 (B)の光のスライスとNを示すスライス投影(C) 髄膜炎菌の微小コロニー(緑)感染のヒト血管(UEA -赤)皮膚移植2時間後感染中。 N.で24時間感染させたヒト皮膚移植片の(D)ヘマ トキシリン/エオシン染色髄膜炎菌 。表皮(e)は、真皮(D)の境界線がはっきりと見えると豊富な血栓症およびmicrovessの混雑ですELS(矢印)は、真皮に見られる。炎症およびいくつかの血管漏出(矢頭)も同定することができる。 (E)の感染前に人間の皮膚移植。 (F)Nの(E)の 24時間後に感染と同じ皮膚移植プルプル領域(矢印)を示す膜炎は、 図2(b)は、2D、2E、および2Fは Melican ら 18から変更されている図 拡大画像を表示するには、ここをクリックし 。
動物モデルは、細菌の病原性の研究に非常に重要である。それは完全に細胞培養におけるin vivo環境を模倣することは不可能であり、それは、宿主-病原体相互作用は、多くの動的要因によって影響されることが明らかになってきている。このようなNのようないくつかの臨床的に重要な病原体の人間の特異性髄膜炎は 、HIV、HCV、 熱帯熱マラリア原虫、リステリア·モノサイトゲネス、及びチフス菌は、これらの感染症のためのin vivoモデルの使用が制限されている。我々は、感染ステップが、特異に関与しているかを理解し始めるように、しかし、ヒト化モデルが開発されている。ここで説明するプロトコルは、Nの生体内感染で豊富を考慮して、マウスへのヒト微小血管の導入に伴い、このデモで髄膜炎は 、血管損傷、時には紫斑発疹の開発をもたらし。
このモデルを用いて、我々のTfpの接着性細菌の変異体を使用し、血管損傷、接着18の非存在下で減少することが、インビボでの血管コロニー形成に関与していることを定義することができた。以前は、循環細菌産物は、この損傷に関与しているが、我々の結果は、地元密着性と血管コロニー形成のために決定的な役割を示唆している。これは新たな治療ターゲットの開発のための新しい可能性を開きます。病原性細菌の付着は、薬学的にブロックすることができれば、それはおそらく皮膚病変の発症を予防し、組織の壊死、壊死組織切除および切断の点で髄膜炎菌の生存者のためのより良い成果につながる可能性があります。仕事はまた、感染の複雑さと、免疫応答および凝固カスケードの関与を実証しています。我々は、本ヒト内皮18の比較的少量にもかかわらず、感染したマウスの血清中のヒトサイトカインシグナル伝達を同定した。これは、領域内にマウスの免疫細胞集団の浸透に伴って、有意なサイトカイン応答を示した。
動物モデルは、もちろん完全にヒトの疾患を複製することはできませんし、すべての結果はこのことを考慮して検討する必要があり、そこから集めました。例えば、このモデルでは、血液や循環細胞は、マウス由来のものであり、私たちは、彼らが人間の細胞に異なる挙動を示すことが軽視することはできません。この利点は、しかしながら、我々の最近の刊行物18に示されているように、循環するマウス細胞とは、ヒト内皮から発信シグナリング分化する能力である。このモデルで用いたマウスの免疫無防備状態のバックグラウンドは、さらに「ヒト化」局面を添加し、ヒト免疫細胞集団の同種転写を可能にするであろう。マウスの免疫不全の背景には、しかし、このすべてのモデルに欠けや不良NK、TまたはB細胞の役割をマスクすることができる。比較的ショアこのモデルで使用されるTの時間枠(24時間)は、主に生得的反応に関係しますが、長期的な感染症や免疫、その他のオプションの開発のために検討される必要があるかもしれない。
皮膚はNのための重要な感染部位である髄膜炎菌が、ヒトの血管の比較的少量を有し、また、多数の器官が関与する全身感染にデータを外挿することは困難であることを意味する。このモデルは、皮膚病変の開発の研究を可能にしながら、このような上皮および血液脳交差点などの髄膜炎菌感染症の重要なステップが含まれていません。これらのヒト化モデルのさらなる開発は、感染のこれらの他の側面に対処するために必要とされる。それにもかかわらず、このモデルでは、多数のヒトの特定の病原体、血管をターゲットに、特にそれらのための大きな可能性を提供しています。
著者らは、競合する経済的利益を宣言していません。
著者は、原稿の重要な読書のためのDumenilラボのすべてのメンバー、特にジルケ·シルバに感謝したいと思います。マホソットヨーロジョルジュ·ポンピドゥー(HEGP)での手術部門、デビッドMaladry。マイケルHivelin博士パトリックBruneval、HEGPの病理部。エリザベスユック率いるPARCCの動物施設、。この作品は、次のgrant機関によってサポートされていました:マリー·キュリーのIEFの交わりがない。 273223(KM)、INSERMからATIP-アベニールグラントは、CODDIM機器の助成金(イル=ド=フランス地方)、FRM機器の助成金、優秀コンソーシアムのIBEID研究所(財団はLA RECHERCHEmédicaleを注ぐ)、ANR助成金」(通信社国立ラ·ルシェルシュを注ぐ)バグ·イン·フロー」。資金提供者は、研究デザイン、データ収集と分析、公開することを決定、または原稿の準備に何の役割がありませんでした。
Name | Company | Catalog Number | Comments |
DMEM | Gibco Invitrogen | 31885-023 | |
Phosphate buffered saline | Gibco Invitrogen | 10010-056 | |
Ketamine 500 | Virbac France | lot no. VAL4243 | |
Xylazine | Bayer Healthcare | AMM N° FR/8146715 2/1980 | lot no. KPO809S |
Optigel | Europhta | ||
Lacrigel | Medicament Autorisé | ||
Tronothane | Lisa Pharma | ||
GC agar base | Conda | 1106 | |
Human endothelium SFM media | Gibco Invitrogen | 11111 | |
Fetal bovine serum | P A A | A15-101 | |
Human transferrin | Sigma-Aldrich | T3309 | |
UEA lectin - rhodamine | Vector Labs | RL-1062 | |
Hematoxylin | Sigma-Aldrich | H9627 | |
Eosin | Sigma-Aldrich | E4009 | |
Xylene | Sigma-Aldrich | 534056 | |
Sober Hand Dermatome | Humeca BV, Holland | 4.SB01 | |
Animal housing | Innovive | M-BTM-C8 | |
Biopsy punch (4 mm) | Dominic Dutscher | 30737 | |
Fast-Prep lysing matrix M tubes | MP Bio | 116923050 | |
MagNA Lyzer Green Beads | Roche | 3358941001 | |
MagNA Lyzer | Roche | 3358976001 | |
VECTASHIELD mounting media | Vector Labs | H-1000 | |
Vetbond | 3M | 1469SB | Tissue Glue |
OCT tissue tek | Sakura | 4583 |
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved