JoVE Logo

サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

この記事について

  • 要約
  • 要約
  • 概要
  • プロトコル
  • 結果
  • ディスカッション
  • 開示事項
  • 謝辞
  • 資料
  • 参考文献
  • 転載および許可

要約

人工内耳感覚上皮のプロテオーム解析は、その小さなサイズのために、膜タンパク質が単離および同定することが困難であるため、挑戦的であることができる。膜および可溶性タンパク質の両方は、高分解能質量分析と一緒に複数の調製方法及び分離技術を組み合わせることによって同定することができる。

要約

プロテオミクスは、複雑な生物システムへの洞察を提供することができ、一般的に使用されるアプローチである。蝸牛感覚上皮は、末梢神経系および中枢神経系で処理された電気化学的エネルギーに音の機械的エネルギーを伝達する受容体が含まれています。いくつかのプロテオミクス技術は、二次元の差ゲル電気泳動(2D-DIGE)、抗体マイクロアレイ、および質量分析(MS)などの内耳蝸牛を研究するために開発されてきた。 MSは、プロテオミクスにおける最も包括的かつ汎用性の高いツールであり、分離方法と組み合わせて、生物学的サンプルの詳細なプロテオームを提供することができます。 MSと組み合わせた分離方法は、タンパク質サンプルを濃縮する低分子量および疎水性タンパク質を検出し、プロテオームダイナミックレンジを低減することにより、低濃度タンパク質を同定する能力を有する。異なる消化戦略は、ペプチドおよびタンパク質を向上させ、全体溶解物または分画タンパク質溶解物に適用することができる配列カバー。強カチオン交換(SCX)、逆相(RP)、およびゲル溶出液画分の閉じ込め電気泳動(GELFrEE)を含む様々な分離技術の利用は、タンパク質同定のためのMS分析前に試料の複雑さを低減するために適用することができる。

概要

プロテオミクスは、タンパク質の発現、機能、変更、および1の相互作用解析することにより、複雑な生物系の研究である。いくつかの方法は、抗体マイクロアレイ2、二次元ゲル電気泳動3-5、およびDIGE 6を含む内耳のプロテオーム解析のために利用されてきた。しかし、タンパク質の限られた数が同定されており、内耳11,12において同定10,000以上の遺伝子および発現配列タグ(EST)と比較して、2,7-10を特徴とする、MSは、最も一般的に使用され、包括的技術であるタンパク質特性のためのプロテオミクス。このような蝸牛のような複雑なプロテオミクスサンプルの分析は、挑戦することができます。しかしながら、MSを有する複数の分離技術の組み合わせは、増大したダイナミックな濃度範囲およびピーク容量13に、ペプチドおよびタンパク質のより多くの同定を可能にする。多次元chromatogra物理ポートは、異なる吸着機構の使用を可能にすることによって、非常に複雑なタンパク質混合物を減少させる。 2一般的に使用されるMSのプロテオーム解析アプローチ、ショットガンとボトムアッププロテオミクスがあります。ショットガンプロテオミクスでは、インタクトなタンパク質の混合物を酵素的に消化し ​​、逆相液体クロマトグラフィー(RPLC)14,15、続いて強力な陽イオン交換クロマトグラフィー(SCX)を用いて、多次元クロマトグラフィーを用いて分離される。分離されたペプチドは、タンデムMSとデータベース15を検索にかける。この技術の主な利点は、何千ものタンパク質が単一の分析で同定することができ、技術は膜タン​​パク質に適していることである。

ボトムアップアプローチにおいて、タンパク質混合物は、通常、1次元または2次元電気泳動によって分離し、個々のタンパク質バンドまたはスポットを切り出し、トリプシンなどの酵素で消化し、通常は複数のペプチドが得られる。しかし、別のより最近のLYは、ボトムアッププロテオミクスで使用、電気泳動の手法を開発し、GELFrEEです。この技術は、液相中のタンパク質サンプルを分別し、分析前にそれらをあまり複雑にする。この手法は、再現性が高いタンパク質回収を提供し、複雑なタンパク質サンプル16内の高濃度タンパク質の分布を低減します。分離されたタンパク質から生じるペプチドを、データベース17〜19を検索するための配列タグを作成するために、ペプチドマスフィンガープリンティングまたはタンデムMS(MS / MS)を用いて、MSによって分析される。ボトムアップアプローチを使用する主な利点のいくつかは、高分解能の分離と包括的なタンパク質カバレッジを得る能力である。ボトムアッププロテオミクスプロテオミクス20で最も広く使用される技術である、したがって、いくつかのバイオインフォマティクス·ツールの提供。加えて、タンパク質消化の前に複雑な混合物中で分離することができるので、識別のより大きな可能性がある。

大きな課題の一つプロテオーム解析のための内耳を使用してその小さなサイズ、制限されたアクセス可能性、および細胞型の多様性21である。また、このようなイオンチャネル、輸送体および受容体としての機能を区別する重要なタンパク質は、22を単離することが困難であることができる膜タンパク質である。従って、フィルタ支援試料調製(FASP)をタンパク質抽出のために制限されている組織のプロテオーム解析のために有利で ​​あり、膜23を可溶化するために界面活性剤を必要とする。このフィルタリングは、膜および可溶性タンパク質のMS分析のために、低分子量混入物23,24からペプチドを単離する能力を可能にする。

本プロトコルは、合わせて、両方の可溶性タンパク質および膜タンパク質を分析し、蝸牛感覚上皮からのタンパク質IDの数を最大化するために修正される一般的に使用されるプロテオミクスのアプローチを記載する。私たちは、FASPマルチダイジェストでショットガンプロテオミクスを使用して説明しますイオンは、イオン交換クロマトグラフィー、高分解能MS、およびデータ分析。加えて、我々はGELFrEE、FASPマルチ消化、高分解能MS、およびデータ分析とボトムアッププロテオミクスについて説明する。

プロトコル

倫理に関する声明

国立衛生研究所のガイドラインの下で記載されたマウスの組織を用いた実験は、南フロリダ大学施設内動物管理使用委員会(プロトコル3931R、3482R)により承認された。

1。タンパク質抽出

  1. -80℃で16〜30日齢(P30)CBA / Jマウスとストアから蝸牛感覚上皮を分離
  2. 実験の日に、1×リン酸緩衝生理食塩水(PBS)500μlで組織を洗浄する。千×gで3分間遠心し、上清を除去します。合計3回の洗浄のために繰り返します。
  3. 50mMのトリス-HCl、pH8.0、120mMのNaClを、50mMのNaFを、5mMのEDTA、500μg/ mlのAEBSF、10μg/ mlのロイペプチン、100μgのを/含有する溶解緩衝液100μlで、氷上で30秒間超音波処理した組織ソニックディスメン(;サーモフィッシャーモデル100)を使用してペプスタチンミリリットル、2μg/ mlのアプロチニン、および0.5μg/ mlのミクロシスチン。氷の上でクールな溶解液各超音波処理との間に1分間。 3Xの合計を超音波処理。
  4. 2分間、4℃で750×gでの抽出物を遠心分離し、新しいマイクロチューブに上清を除去します。氷上で30秒間超音波処理することによって、溶解緩衝液50μlにペレットを抽出します。 2分間、4℃で750×gでの抽出物を遠心分離する。 60分間、4℃で28,600×gで溶解物および遠心分離機の両方を兼ね備えています。新しいマイクロチューブに上清を除去し、ペレットに0.1%ASB-14を含む20μlの溶解バッファーを追加します。ボルテックスで1分間、4℃で60分間インキュベートする
  5. 60分間4℃でクール、次いで、5分間、95℃で試料を加熱する。 10分間、25℃で16,000×gで遠心分離して従ってください。上清を回収し、新しいチューブに移す。
  6. 5分間、4℃で16,000×gで懸濁物を遠心分離し、消化のために、上清を保持します。

2。 FASPを使用して全溶解液の二重トリプシンタンパク質消化

  1. 30μを追加4%ドデシル硫酸ナトリウム(SDS)を含む蝸牛のタンパク質抽出物(400μgの≤)リットルのアリコートを、100mMのトリス-HCl、pHが7.6および0.1 Mジチオスレイトール(DTT)を直接30Kスピンフィルター及び8200μlの混合トリス-HCl中のM尿素。 15分間14,000×gで遠心分離する。
  2. 15分間14,000×gで8 M尿素水溶液遠心200μLの濃縮物を希釈する。
  3. 1分間のフィルターと渦に集中する8 M尿素溶液中で10倍ヨードアセトアミド(IAA)の10を添加する。 10分間、14,000×gの遠心分離に続いて暗所で室温(RT)で20分間スピンフィルターをインキュベートする。
  4. 15分間14,000×gでフィルタユニットや遠心分離機に集中する8 M尿素溶液100μlを加える。このステップの2倍を繰り返します。 50 mM重炭酸アンモニウム(ABC)10分間14,000×gでフィルタユニットや遠心分離機に溶液100μlを加える。このステップの2倍を繰り返します。
  5. 1:100トリプシン0.4μgの/μLを追加します(w / w)の酵素へタンパク質比は、37℃で一晩(O / N)をインキュベートする
  6. インキュベーションに続いて、10分間14,000×gで遠心分離器をフィルタするために50 mMのABC溶液40μlを加える。このステップ1Xを繰り返します。
  7. 10分間14,000×gでスピンフィルターと遠心分離機に0.5MのNaCl溶液50μlを追加します。新鮮なマイクロチューブにトリプシンペプチドを含む濾液を転送し、消化を停止するために1.0%ギ酸(FA)で酸性化する。
  8. 8 M尿素40μlのフィルターユニットを洗浄し、次に40μlの18MΩ水で2回洗う。
  9. 50 mMのABC溶液100μlをフィルタユニット3回洗浄します。最後の洗浄は、1:100(w / w)の酵素対タンパク質比でトリプシン0.4μgの/μLを加え、37℃でO / Nインキュベートした後に
  10. 第10分間14,000×gでフィルタユニットや遠心分離機に50 mMのABC溶液40μlを添加することにより、消化物からのトリプシンペプチドを溶出させる。このステップ1Xを繰り返します。
  11. に0.5MのNaCl溶液50μlを追加10分間14,000×gで、フィルタ部と遠心。新鮮なマイクロチューブにトリプシンペプチドを含む濾液を転送し、1.0%のFAで酸性化する。
  12. 試料は、標準としてBSAを用いてマイクロプレート比色アッセイを用いて定量することができる。

3。 FASPを使用して全溶解液のエンドプロテアーゼのLysCとトリプシンタンパク質消化

  1. 直接30Kスピンフィルターに4%のSDS、100mMのトリス-HCl、pHが7.6および0.1M DTTを含む蝸牛タンパク質抽出物30μlのアリコート(400μgの≤)を追加し、トリス塩酸8 M尿素を200μlと混合。 15分間14,000×gで遠心分離する。
  2. 15分間14,000×gで8 M尿素水溶液遠心200μLの濃縮物を希釈する。
  3. 1分間のフィルターと渦に集中する8 M尿素溶液中で10倍IAAの10μlを加える。暗闇の中で室温で20分間スピンフィルターをインキュベートし、10分間14,000×gで遠心する。
  4. 8 M尿素ゾルの100μLを追加15分間14,000×gでフィルタユニットや遠心分離機に集中するution。このステップの2倍を繰り返します。 10分間14,000×gでフィルタユニットや遠心分離機に100 mMの、ABC溶液100μlを加える。このステップの2倍を繰り返します。
  5. 1時50分(w / w)の酵素対タンパク質比でエンドプロテアーゼのLysC0.1μgの/μLを加え、30℃でO / Nインキュベート
  6. インキュベーションに続いて、10分間14,000×gでフィルタユニットや遠心分離機に100 mMの、ABC溶液40μlを加える。このステップ1Xを繰り返します。
  7. 10分間14,000×gでスピンフィルターと遠心分離機に0.5MのNaCl溶液50μlを追加します。新鮮なマイクロチューブにするlysCペプチドを含むろ液を移し、消化を停止するために1.0%のFAで酸性化する。
  8. 8 M尿素40μlのフィルターユニットを洗浄し、次に40μlの18MΩ水で2回洗う。
  9. 50 mMのABC溶液100μlをフィルタユニット3回洗浄します。最後の洗浄の後1:100酵素·ツー·プロトリプシン0.4μgの/μLを追加テイン比と37​​℃でO / Nインキュベート
  10. 10分間14,000×gでフィルタユニットや遠心分離機に50 mMのABC溶液40μlを添加することにより、トリプシンペプチドを溶出。このステップ1Xを繰り返します。
  11. 10分間14,000×gでフィルタユニットや遠心分離機に0.5MのNaCl溶液50μlを追加します。新鮮なマイクロチューブにトリプシンペプチドを含む濾液を転送し、1.0%のFAで酸性化する。
  12. 試料は、標準としてBSAを有するマイクロプレート比色アッセイを用いて定量することができる。

4。スピンカラムを用いて脱塩ペプチド

  1. 1分間1100×gでアセトニトリル(ACN)と遠心分離機を500μlを加えることにより、C 18 MacroSpin欄をアクティブにします。遠心分離後、フロースルーを捨てる。
  2. 1分間1100×gで0.1%のFA遠心500μlでカラムを平衡化。フロースルーを捨て、このステップ1Xを繰り返します。
  3. ペプチドを500μlまで追加の列ANにダイジェスト1分間1100×gで遠心分離dは。サンプル量が500μL以上である場合は、この手順を繰り返します。
  4. 1分間1100×gで0.1%のFA遠心500μlでカラムを洗浄。フロースルーを捨てる。このステップ1Xを繰り返します。
  5. 1分間1100×gで列遠心90:10 ACN対水の比率を250μlを加える。脱塩したペプチドを含む溶離液を収集し、新鮮なマイクロチューブに移す。このステップ1Xを繰り返します。
  6. 真空遠心分離機で脱塩ペプチド試料を乾燥させ、完全にサンプルの乾燥をさせることは避けてください。

5。イオン交換クロマトグラフィー

  1. ペプチドを分離するために200×2.1ミリメートル、5ミクロンのSCXカラム(ポリスルホエチルA)に消化されたタンパク質試料の50〜100μgのを注入する。
  2. を250μl/分の流速で50分間にわたって2〜40%Bの勾配を使用する。溶媒Aは5 mMのギ酸アンモニウム、25%アセトニトリル中のpHが3.0と75%のddH 2 Oである。溶媒Bは、500 mMのギ酸アンモニウム、pHは25%ACNおよび75%のddH 2 O中に6.0
  3. 280nmでのペプチド画分を監視し、フラクションコレクターを使用して、2分間隔での画分を収集します。
  4. 塩除去を支 ​​援するために、5%のFAを含むのddH 2 O中の50%アセトニトリル500μlの真空濃縮器および再懸濁の乾燥画分。
  5. ナノLC-MS/MS分析のために使用する準備まで-80℃でRedry画分と店舗。

6。アセトン沈殿

前にGELFrEE分離に蝸牛タンパク質上清を脱塩しなければなりません。アセトン沈殿、タンパク質を脱塩し、濃縮するために用いることができる。

  1. 蝸牛上清に氷冷アセトンの3ボリュームを追加します。優しくボルテックスし、-20°、CO / Nでインキュベート
  2. 遠心4℃で15分間15,000 xgでのサンプル混合物および上清を除去する。
  3. 4で5分間14,000×gで冷やしたアセトンと遠心分離機を用いたタンパク質ペレット3回洗う℃、
  4. ペレットを空気乾燥させ、18MΩの水を112μlに溶解する。
  5. マイクロプレート比色アッセイを用いてタンパク質濃度を決定します。

7。蝸牛感覚上皮のGELFrEE分別

  1. 5×試料緩衝液30μlを追加し(0.25 Mトリス-HCl、pH6.8、10%(w / v)のSDS、50%グリセロール、0.5%(w / v)のブロモフェノールブルー)18MΩの112μlに懸濁し、脱塩したタンパク質に水。
  2. タンパク質ジスルフィド結合を還元するために95℃で5分間、1M DTTおよび熱の8μlを加える。加熱後、室温まで冷却可能にします。
  3. アノードリザーバーにランニングバッファーを8mlの、収集チャンバをサンプリングするためにランニング緩衝液を150μl、及びカソードリザーバーにランニング緩衝液を6mlを加える。
  4. ピペットを用いてサンプルローディングチャンバ内に流入した可能性のあるバッファを削除します。
  5. 蝸牛タンパク質混合物の負荷150μL(≤1 mg)を、サンプルローディング室に8%Trのを使用して3.5から150 kDaの質量範囲を有するカートリッジアセテートである。
  6. 実行を開始するために下部電極と近い楽器蓋。
  7. 最初は陰極リザーバにランニング緩衝液2 mlを追加し、ファイル名を指定して実行を再開し、機器に時間を一時停止しました。
  8. 計器上の各一時停止間隔で、ピペットを用いて、サンプル収集チャンバーからサンプルを収集し、新たにラベルされたマイクロチューブに加える。ランニング緩衝液150μlで収集チャンバ2Xを洗って捨てる。
  9. サンプル収集室に新鮮なランニングバッファーを150μlを追加し、ファイル名を指定して実行を再開します。を150μl/画分の総体積の2.6時間の時間をかけてタンパク質画分を集める。

8。 GELFrEE分画の1Dゲル電気泳動

1Dゲル電気泳動は、従来の酵素消化およびMS分析にGELFrEE分画からの結果を可視化するために使用することができる。 GELFrEEタンパク質画分は、4〜15%トリス-HClゲル上で分離することができる。

  1. (試料緩衝液中で350のDTT)サンプル希釈バッファー5μlの各GELFrEE画分の5μlのアリコートを混ぜる。
  2. 3分間95℃で試料を加熱する。
  3. 室温に冷却サンプル。
  4. 個々のゲルのレーン内GELFrEE分、最後の未使用レーンの分子量標準の負荷5μLの負荷10μL。
  5. 色素の先端がゲルの底に到達するまで1.5時間、125Vでゲルを実行するか。
  6. 慎重にゲルを除去し、タンパク質の分離を視覚化するために銀染色プラスで染色。

9。 FASPを使用しGELFrEE画分のタンパク質消化

修飾FASP手順はGELFrEE画分の界面活性剤の除去、消化のために使用される。

  1. 8 Mトリス - 塩酸中の尿素および25分間14,000×gで遠心分離器を200μlと混合、直接30Kフィルタユニットに個々​​の部分を追加します。
  2. 尿素溶液200μlで濃縮液を希釈そして12分、14,000×gで遠心分離します。このステップ1Xを繰り返します。
  3. 各フィルタ·ユニット、1分間ボルテックスに集中する尿素溶液中で10倍IAAの10μl加え、暗所で室温で30分間インキュベートする。
  4. 15分間14,000×gでフィルタユニットや遠心分離機に集中する尿素溶液100μlを加える。このステップの2倍を繰り返します。フィルタユニット10分間14,000 xgで遠心分離器に100 mMの、ABC溶液100μlを加える。このステップの2倍を繰り返します。
  5. フィルターユニット1:50(w / w)の酵素対タンパク質比のためのLysC0.1μgの/μLを加え、30℃でO / Nインキュベート
  6. インキュベーションに続いて、10分間14,000×gでスピンフィルターと遠心分離機に100 mMの、ABC溶液40μlを加える。このステップ1Xを繰り返します。
  7. 10分間14,000×gでスピンフィルターと遠心分離機に0.5MのNaCl溶液50μlを追加します。新鮮なマイクロチューブに各スピンフィルターからのlysCペプチドを含むろ液を移し、trifluoroacで酸性ポナルレスタット酢酸(TFA)。
  8. 40μlの18MΩ水で2回洗った後、8 M尿素40μlのスピンフィルターを洗ってください。
  9. スピンフィルターを50mMのABC溶液100μlで3回洗浄します。最後の洗浄の後1:100(w / w)の酵素対タンパク質比でトリプシン0.4μgの/μLを加え、37℃でO / Nインキュベート
  10. 10分間14,000×gで50 mMのABCソリューションや遠心分離機の40μLを追加することにより、各フィルタユニットからトリプシンペプチドを溶出させる。このステップ1Xを繰り返します。
  11. フィルタユニット10分間14,000×gで遠心分離機に0.5MのNaCl溶液50μlを加える。新鮮なマイクロチューブに各フィルタ·ユニットからのトリプシンペプチドを含む濾液を転送し、TFAで酸性化する。
  12. 真空濃縮器内のすべてのダイジェストを乾燥させます。

10。 LC-MS/MS用サンプルの調製

  1. 乾燥したのLysCおよびトリプシンペプチドを再構成すると、0.1%のFAと渦の20μlの画分を消化。
  2. 10 20,000×gで遠心分離サンプル分とは、新しいサンプルバイアルにサンプルの上部95%を削除します。
  3. 塩および汚染物質を除去し、75ミクロン×10cmのC 18カラムクロマトグラフ分離を実行するためには100μmのX 25ミリメートルのサンプル·トラップ上に各々のペプチド画分の5μLを注入する。
  4. 200リットル/分の流量で100分かけて2〜40%Bの勾配を使用する。溶媒Aは95%のddH 2 Oおよび0.1%FAを含む5%のアセトニトリルである。溶媒Bは80%ACNおよび0.1%FAを含有する20%のddH 2 Oである。
  5. 各MSは、高分解能質量分析計で走査するための10のタンデム質量スペクトルを収集する。 LTQオービトラップ質量分析計は、この実験で使用した。

11。タンパク質同定

  1. フォワードおよびタンパク質配列と共通の汚染物質を逆の両方を含むUniProtのマウスデータベースを使用してタンパク質を同定する。 MASCOT検索エンジンとMaxQuantソフトウェアは、タンパク質データベースを検索するために使用される。
  2. 使用可能な検索パラメータには、固定modificシステインのカルバミドメチルのATION、メチオニンの酸化の変数の変更は、タンパク質のN末端アセチル化、2の最大値は切断を逃した。識別のために考慮すべき最小のペプチドの長さが6アミノ酸である。 ±8 ppmおよび1.2 DA(質量誤差は、質量分析計を使用しているに依存します)のフラグメント質量許容のペプチド質量濃度誤差を入力してください。
  3. MaxQuantソフトウェアでは、ペプチドおよびタンパク質同定のために1%の偽発見率(FDR)を使用する。タンパク質同定は、一致したペプチドの数、パーセントタンパク質配列カバー率、およびペプチド配列でリストアップされている。

結果

蝸牛感覚上皮の最も包括的なプロテオームを得るためには、迅速な組織切開前タンパク質抽出およびサンプル調製に必要とされている。二つのプロテオミクス技術は、ショットガンとボトムアッププロテオミクスを使用することができる。 図1に示すようにショットガンプロテオミクスのための試料を調製し、FASP消化手順を使用した。 FASP法は、タンパク質の濃度?...

ディスカッション

蝸牛感覚上皮からタンパク質同定を最大化するための鍵な手順は次のとおりです。消化、複数の分離技術の2)を使用し、高分解能質量分析計の3)利用のために複数のエンドプロテイナーゼの1)を使用します。複数の酵素の適用は、ペプチドの数を増加させ、タンパク質配列カバー率を向上させ、ひいては蝸牛組織から同定されたタンパク質の数を向上させることができる。トリプシン?...

開示事項

著者らは、競合する利害を宣言していません。

謝辞

著者は、博士ケントシーリー、この機能を使用するための南フロリダ大学の創薬イノベーションセンター(CDDI)プロテオミクス基盤施設のディレクターに感謝します。この作品は、BHASにNIH / NIDCD助成R01 DC004295によってサポートされていました

資料

NameCompanyCatalog NumberComments
8% Tris-acetate cartridge Protein Discovery42103
AcetoneSigma-Aldrich179124
AcetonitrileHoneywell015-1L
AEBSFCalbiochem101500
Ammonium formateFisher ScientificAC16861
AprotininCalbiochem616370
ASB-14 Calbiochem182750-5GM
Bovine serum albuminBioRad500-0112
C18 column New ObjectiveA2511275 μm x 10 cm 
DC Protein AssayBioRad500-0116Microplate Assay Protocol
EDTASigma-AldrichE9884
Endoproteinase Lys-CSigma-AldrichP3428
FASP Protein Digestion KitProtein Discovery44250
Formic acid Fluka94318
GELFrEE Fractionation SystemProtein Discovery42001GELFrEE 8100
LeupeptinCalbiochem108975
MacroSpin ColumnThe Nest GroupSMM SS18VSilica C18
MicrocystinCalbiochem475815
PepstatinSigma-AldrichP5318
Polysulfoethyl A ColumnThe Nest Group202SE0503
Sodium dodecyl sulfate (SDS)Sigma-AldrichL3771
Sonic Dismembrator Thermo Fisher15-338-53Model 100
TrypsinSigma-AldrichT6567Proteomics Grade

参考文献

  1. Domon, B., Aebersold, R. Review - Mass spectrometry and protein analysis. Science. 312, 212-217 (2006).
  2. Jamesdaniel, S., Hu, B., Kermany, M. H., Jiang, H., Ding, D., Coling, D., Salvi, R. Noise induced changes in the expression of p38/MAPK signaling proteins in the sensory epithelium of the inner ear. J. Proteomics. 75, 410-424 (2011).
  3. Thalmann, I., Hughes, I., Tong, B. D., Ornitz, D. M., Thalmann, R. Microscale analysis of proteins in inner ear tissues and fluids with emphasis on endolymphatic sac, otoconia, and organ of Corti. Electrophoresis. 27, 1598-1608 (2006).
  4. Thalmann, I., Rosenthal, H. L., Moore, B. W., Thalmann, R. Organ of Corti-specific polypeptides: OCP-I and OCP-II. J. Acoust. Soc. Am. 67, (1980).
  5. Kathiresan, T., Harvey, M., Sokolowski, B. . The use of two-dimensional gels to identify novel protein-protein interactions in the cochlea. In Auditory and vestibular research : methods and protocols. , (2009).
  6. Zheng, Q. Y., Rozanas, C. R., Thalmann, I., Chance, M. R., Alagramam, K. N. Inner ear proteomics of mouse models for deafness, a discovery strategy. Brain Res. 1091, 113-121 (2006).
  7. Peng, H., Liu, M., Pecka, J., Beisel, K. W., Ding, S. J. Proteomic Analysis of the Organ of Corti Using Nanoscale Liquid Chromatography Coupled with Tandem Mass Spectrometry. Int. J. Mol. Sci. 13, 8171-8188 (2012).
  8. Elkan-Miller, T., Ulitsky, I., Hertzano, R., Rudnicki, A., Dror, A. A., Lenz, D. R., Elkon, R., Irmler, M., Beckers, J., Shamir, R., Avraham, K. B. Integration of Transcriptomics, Proteomics, and MicroRNA Analyses Reveals Novel MicroRNA Regulation of Targets in the Mammalian Inner Ear. Plos One. 6, (2011).
  9. Yang, Y., Dai, M., Wilson, T. M., Omelchenko, I., Klimek, J. E., Wilmarth, P. A., David, L. L., Nuttall, A. L., Gillespie, P. G., Shi, X. Na+/K+-ATPase α1Identified as an Abundant Protein in the Blood-Labyrinth Barrier That Plays an Essential Role in the Barrier Integrity. . Plos One. 6, (2011).
  10. Shin, J. B., Streijger, F., Beynon, A., Peters, T., Gadzala, L., McMillen, D., Bystrom, C., Vander Zee, C. E., Wallimann, T., Gillespie, P. G. Hair Bundles Are Specialized for ATP Delivery via Creatine Kinase. Neuron. 53, 371-386 (2007).
  11. Chen, Z. Y., Corey, D. P. An inner ear gene expression database. J. Assoc. Res. Otolaryngol. 3, 140-148 (2002).
  12. Gabashvili, I. S., Sokolowski, B. H., Morton, C. C., Giersch, A. B. Ion channel gene expression in the inner ear. J. Assoc. Res. Otolaryngol. 8, 305-328 (2007).
  13. Horvatovich, P., Hoekman, B., Govorukhina, N., Bischoff, R. Multidimensional chromatography coupled to mass spectrometry in analysing complex proteomics samples. J. Sep. Sci. 33, 1421-1437 (2010).
  14. Ye, M. L., Jiang, X. G., Feng, S., Tian, R. J., Zou, H. F. Advances in chromatographic techniques and methods in shotgun proteome analysis. Trends Anal. Chem. 26, 80-84 (2007).
  15. Wu, C. C., MacCoss, M. J. Shotgun proteomics: Tools for the analysis of complex biological systems. Curr. Opin. Mol. Ther. 4, 242-250 (2002).
  16. Bora, A., Anderson, C., Bachani, M., Nath, A., Cotter, R. J. Robust Two-Dimensional Separation of Intact Proteins for Bottom-Up Tandem Mass Spectrometry of the Human CSF Proteome. J. Proteome Res. 11, 3143-3149 (2012).
  17. Chait, B. T. Mass spectrometry: Bottom-up or top-down. Science. 314, 65-66 (2006).
  18. Aebersold, R., Mann, M. Mass spectrometry-based proteomics. Nature. 422, 198-207 (2003).
  19. Reid, G. E., McLuckey, S. A. Top down' protein characterization via tandem mass spectrometry. J. Mass. Spectrom. 37, 663-675 (2002).
  20. Han, X., Aslanian, A., Yates, J. R. Mass spectrometry for proteomics. Curr. Opin. Chem. Biol. 12, 483-490 (2008).
  21. Thalmann, I. Inner ear proteomics: A fad or hear to stay. Brain Res. 1091, 103-112 (2006).
  22. Lang, F., Vallon, V., Knipper, M., Wangemann, P. Functional significance of channels and transporters expressed in the inner ear and kidney. Am. J. Physiol. Cell Physiol. 293, (2007).
  23. Wisniewski, J. R., Zougman, A., Nagaraj, N., Mann, M. Universal sample preparation method for proteome analysis. Nat. Meth. 6, 359-362 (2009).
  24. Wisniewski, J. R., Zielinska, D. F., Mann, M. Comparison of ultrafiltration units for proteomic and N-glycoproteomic analysis by the filter-aided sample preparation method. Anal. Biochem. 410, 307-309 (2011).
  25. Darville, L. N., Sokolowski, B. H. In-depth Proteomic Analysis of Mouse Cochlear Sensory Epithelium by Mass Spectrometry. J Proteome Res. 12 (8), 3620-3630 (2013).
  26. Vizcaino, J. A., Cote, R. G., Csordas, A., Dianes, J. A., Fabregat, A., Foster, J. M., Griss, J., Alpi, E., Birim, M., Contell, J., O'Kelly, G., Schoenegger, A., Ovelleiro, D., Perez-Riverol, Y., Reisinger, F., Rios, D., Wang, R., Hermjakob, H. The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013. Nucleic Acids Res. 41, 1063-1069 (2013).

転載および許可

このJoVE論文のテキスト又は図を再利用するための許可を申請します

許可を申請

さらに記事を探す

85 LC MS MS

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved