JoVE Logo

サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

この記事について

  • 要約
  • 要約
  • 概要
  • プロトコル
  • 結果
  • ディスカッション
  • 開示事項
  • 謝辞
  • 資料
  • 参考文献
  • 転載および許可

要約

Closed-loop protocols are becoming increasingly widespread in modern day electrophysiology. We present a simple, versatile and inexpensive way to perform complex electrophysiological protocols in cortical pyramidal neurons in vitro, using a desktop computer and a digital acquisition board.

要約

実験的神経科学は、新規の開発と応用への関心の高まりを目撃し、多くの場合、複雑な刺激が、システムの応答にリアルタイムに依存​​する適用、閉ループプロトコルれます。最近のアプリケーションは、光遺伝学3を使用して、皮質脳卒中後の発作の制御に、マウス1とゼブラフィッシュ2の両方の運動反応を研究するための仮想現実システムの実装の ​​範囲です。閉ループ技術の重要な利点は、直接アクセスすることはできませんまたは、同時に実験スループットを最大化しながら、このような神経細胞の興奮4や信頼性などの複数の変数に依存し、より高い次元の特性を探査する能力にあります。この貢献ではと細胞電気生理学との関連で、我々はREC、錐体皮質ニューロンの応答特性の研究に閉ループの様々なプロトコルを適用する方法について説明します若年ラットの体性感覚皮質から急性脳スライスにおけるパッチクランプ法で細胞内orded。何の市販またはオープンソースソフトウェアを効率的にここに記載の実験を行うために必要なすべての機能を提供しないように、LCG 5と呼ばれる新しいソフトウェアツールボックスは、そのモジュラー構造のコンピュータ·コードの再利用を最大化し、新たな実験パラダイムの実装を容易に、開発されました。刺激波形は、コンパクトなメタ記述を使用して指定されており、完全な実験プロトコルは、テキストベースの設定ファイルに記述されています。さらに、LCGは、試験の反復と実験プロトコルの自動化に適しているコマンドライン·インタフェースを備えています。

概要

近年、携帯電気生理学は、近代的な閉ループプロトコルに電圧および電流クランプ実験に用い、従来のオープンループパラダイムから進化してきました。最もよく知られている閉ループ技術は、おそらく神経細胞膜電位8を決定するために人工的な電位依存性イオンチャネルの合成注入を可能に動的クランプ6,7であり、非決定論的には、フリッカの影響の詳細な研究神経応答のダイナミクス9、ならびにシナプス背景活動10のようなvivo-で現実的なのin vitroでのレクリエーションのイオンチャネル。

提案されている他の閉ループパラダイムは、 インビトロ自立持続的活動の発生、及び応答は細胞機構を下にある神経細胞の興奮性を調査するために、4,12をクランプを研究するために、反応性クランプ11を含みます。

ontent ">ここでは、急性脳スライスで行われる全細胞パッチクランプ記録のコンテキストで閉ループ電気生理学の様々なプロトコルを適用することができる強力なフレームワークを記述している。我々は、パッチクランプ記録を用いて体細胞膜電圧を記録する方法を示しています若年ラットの体性感覚野からの錐体ニューロンでLCG、理論神経生物とNeuroengineeringの研究室で開発されたコマンドラインベースのソフトウェアツールボックスを使用して、3つの異なる閉ループプロトコルを適用します。

簡単に言えば、記載されたプロトコルは、アクティブおよびパッシブ膜特性の大きな集合の特性に関連する、電流クランプ刺激波形のシリーズの最初の自動注入されています。これらは、刺激波形の定型一連の応答特性の点で細胞の電気生理学的表現型を捕捉するために提案されています。セルの電子コードとして知られている( 例えば 、参照してください  13,14)が 、電気的応答のようなコレクションは、客観的に、それらの電気的特性に基づいて神経細胞を分類するためにいくつかの研究室で使用されます。これは、比例積分微分(PID)コントローラにより発火の速度の閉ループリアルタイム制御を含む革新的な技術によって、固定入出力伝達関係(FI曲線)の分析が含まれ、第二のインビトロ製剤10と、コンピュータでシミュレートされた仮想のGABA作動性介在ニューロンの手段により2同時に記録錐体ニューロンのリアルタイムで第人工接続で現実的なインビボの様な背景シナプス活性のレクリエーション。

さらに、LCGは、単一の電極を用いたダイナミッククランププロトコルを実装することができ、活性電極報酬(AEC)15、として知られる技術を実装しています。これは望ましくない影響を補償することができます(Aそれは、細胞内刺激を送達するために使用される場合に生じる記録電極のrtifacts)。この方法は、記録回路の等価電気特性のノンパラメトリック推定に基づいています。

このホワイトペーパーに記載された技術と実験プロトコルは、容易に従来のオープンループ電圧と電流クランプ実験に適用することができ、 生体内 17,18 、このような細胞外4,16のような他の製剤、または細胞内記録に拡張することができます。全細胞パッチクランプ電気生理学のセットアップの注意深いアセンブリは安定した高品質の記録のために非常に重要なステップです。以下では、そのような実験は、実験者に既に利用可能であることを前提とし、LCGの使用法を説明する上で私たちの注意を集中します。読者は、最適化とデバッグに関する追加のヒントについては、19〜22に指摘されています。

プロトコル

ここで説明するプロトコルは、アントワープ大学の医歯薬学総合研究科の倫理委員会の勧告やガイドラインに準拠しています。このプロトコルは、承認された人道的な安楽死法により得られた幼若Wistarラットの外植脳からの非知覚材料の準備が必要です。

1.機器の準備

  1. データ収集と刺激システムをインストールして設定します。
    1. 信号を記録し、電気生理学的アンプにアナログ制御電圧を送信するためにCOMEDIでサポートされているデータ集録(DAQ)カードを搭載したパーソナルコンピュータ(PC)を使用します。
      注:詳細についてはhttp://www.comedi.orgを参照してください。COMEDIは、最も一般的なメーカーからDAQカードの多くをサポートし、Linuxのモジュールとライブラリです。
    2. コンピュータ制御パッチクランプ増幅器が使用中である場合には、アンプ専用の1以外の第二のPCを使用しますコントロール。
      注:後者は、従来のオペレーティングシステムを実行することができるが、余分なPCは特別なオペレーティングシステムによってリアルタイムで動作します。これらの条件の下では、専用のPCにリモートデスクトップアプリケーションで接続している間、余分なPCに接続された単一のモニタ、マウス、キーボードを使用すると便利です。
    3. 「LCGはhttp://www.tnb.ua.ac.be/software/LCG_Live_CD.isoからプリインストールして、リアルタイムLinuxオペレーティング·システムを含むライブCDのISOイメージをダウンロードして、空のCDまたはUSBスティックにそれを燃やします。
    4. 単にDAQカードを含むPCのドライブにCDを挿入し、それを起動します。代わりに、Linuxオペレーティングシステム( 例えば、DebianやUbuntuを使用)を実行しているPC上のオンラインソースリポジトリからLCGをインストールしてください。インストール手順の詳細については、オンラインマニュアルを参照してください。マニュアルはhttp://danielelinaro.github.io/dynclamp/lcg_manual.pdfからオンラインで入手できます。
    5. ライブCDから起動:THISは自動的に完全に構​​成されたシステムをロードします。これを行うには、コンピュータのCD-ROMドライブにLCGのLive CDを置いて、CDからコンピュータを起動します。起動メニューが表示されるとすぐにリアルタイム·カーネル(デフォルトオプション)を選択し、システムが初期化されるまで待ちます。
    6. コマンドプロンプトで次のように入力してDAQカードのキャリブレーション:
      sudoのcomedi_calibrate
      または
      sudoのcomedi_soft_calibrate
      データ収集ボードはそれぞれ、ハードウェアまたはソフトウェアのキャリブレーションをサポートしているかどうかに応じて(ボード上の情報を取得するには、コマンドはsudo comedi_board_infoを使用します)。
    7. 適切なアナログ - デジタルおよびデジタル - アナログ変換係数を設定します。これは、細胞電気アンプのマニュアルに、特にその変換係数上の仕様にアクセスする必要があります。
    8. 環境変数のため、ファイル/home/user/.lcg-envに適切な数値を指定するには、テキスト·エディタを使用しAI_CONVERSION_FACTOR_CC、AI_CONVERSION_FACTOR_VC、AO_CONVERSION_FACTOR_CC、AO_CONVERSION_FACTOR_VC。
      注:これらは、電流クランプ(CC)とクランプ電圧(VC)モードの入力(AI)および出力(AO)のゲインを示し、計算機によって供給される電圧指令とアンプにより生成される電流または電圧の変換係数、それぞれ。
    9. 代わりに、彼または彼女のシステムの変換係数を見つけるために、(LCG-見つける変換因子)が提供LCGスクリプトを使用します。
      注:によって計算された値LCG-見つける変換因子は、ある場合には数値的に切断されたことが要求または変換係数の正確な値を反映するように丸みを帯びているの推測です。
    10. LCG-見つける変換因子を使用するには、多くの場合、対応するヘッドステージにアンプを購入した」モデルセルを「接続することから始めます。そして、あなたはライブCDを実行しているLinuxマシン上でターミナルを開き、シェルプロンプトで次のコマンドを入力します。
      セントルシアG-見つける変換因子-iの$ HOME / .lcg-ENV -o $ HOME / .lcg-ENV
      注:両方の場合において( すなわち、手動/home/user/.lcg-envまたはLCG-見つける変換因子の使用の変更)、閉じて、変更を有効にするには、端末を開きます。
    11. 複数のヘッドステージを使用する場合は、すべてのチャネルで同じ値に換算係数を設定します。それが不可能な場合は、より優れたユーザーのニーズに合わせた設定ファイルを生成するためにLCG-刺激または方法で複数の変換係数を使用する方法を理解するためのLCGのオンラインマニュアルを参照してください。

体性感覚皮質から急性脳スライスの作製

  1. 電気生理学のためのソリューションの準備。
    1. (MMで)混合することによって、人工脳脊髄液(ACSF)を準備125のNaCl、2.5のKCl、1.25のNaH 2 PO 4、26のNaHCO 3、25グルコース、2のCaCl 2、および1のMgCl 2。減少させるために10倍のストック溶液を調製します実験の日に準備時間。 1スライスの準備と記録のために他のために使用されるの2 Lを、準備します。
    2. 手順の開始前に少なくとも30分間、95%O 2および5%CO 2でのACSFを飽和させます。
    3. 現在のクランプ記録のために、(MMで)115 K-グルコン酸、20のKCl、10 HEPES、4 ATP-Mgを、0.3-GTP 2のNa、10のNa 2 -phosphocreatineを含む細胞内液(ICS)を使用します。氷の中の溶液を調製し、ピペットを詰まらせる危険性を排除するために録音の開始に先立って、それをフィルタリングします。
  2. 脳抽出。
    1. 4%イソフルランで誘導チャンバ内に動物を置く動物を麻酔し、急速にギロチンや大きなハサミを使用して首を切ります。
    2. 正中線に沿って皮膚をカットし、耳にそれをスライドさせます。
    3. はさみの罰金ペアを使用すると、正中線に沿って頭蓋骨を切りました。目にできるだけ近いブレードを保ちますE面は、下にある脳の損傷を最小にするように。 、ピンセットで頭蓋骨を開き、視神経および脳幹を切断し、穏やかに、氷冷ACSFで脳をドロップし、スパチュラを使用しています。
    4. 小脳とメス(ブレード24)との2つの半球を分離します。
    5. 2つの半球の1から過剰の水を除去し、瞬間接着剤のドロップを使用して、傾斜台上に接着。すぐに脳の上にACSFを数滴を追加し、ビブラトーム室に転送します。
      注:矢状スライスを調製する場合、プラットフォームの角度は、スライス手順中に錐体細胞の樹状突起の損傷を避けることが重要です。
  3. 切片の調製。
    1. 脳の上にブレードを置き、最初の2.5捨てる - 3ミリ。スライス手順に必要な時間を最小化すると同時に、スライスの表面への損傷を制限するために、速度と周波数を調整します。
    2. 300μの厚さを設定しますMとスライスを開始します。ブレードは皮質を過ぎてしまった後は、海馬の上、対象の皮質領域の端で切断するためにカミソリの刃や曲がった針を使用しています。
    3. 34℃ - マルチウェルインキュベーションチャンバー内のスライスを置き、32に保ちました。
    4. ブレードを撤回し、5までの点2.3.2および2.3.3を繰り返す - 8スライスがカットされています。最良のスライスは、通常、血管が表面に平行であるものです。
    5. 最後のスライスは、チャンバ内に配置された後、30分間、切片をインキュベートします。

レイヤ5錐体ニューロンから3パッチクランプ記録

  1. 記録チャンバー内のスライスを置き、健康な細胞を検索します。これらの細胞は、通常より低いコントラスト、滑らかな外観を持ち、腫れはありません。
  2. 40X倍率レンズを顕微鏡下でスライスを点検し、層5のセルを検索し、脳の表面から約600〜1000ミクロンに位置します。
  3. 適切なセルが検出されると、ICSとのマイクロピペットの負荷三分の一とは、ヘッドステージに配置します。
  4. ライブCDまたは事前設定されたLinuxオペレーティングシステムを実行しているパーソナルコンピュータでは、コマンドシェル( 例えば 、bashの)を起動し、そのプロンプトでコマンドLCGゼロ。これは、DAQボードがアンプを駆動していないことを保証します。
  5. ピペットホルダーにチューブと、顕微鏡の助けを借りて、約100μmのスライスの上にピペットを配置することにより、接続された共通の注射器のピストンを押すことによって正圧の50ミリバール - 30を適用します。
    注:好ましくは、マイクロマニピュレータのアプローチモードを使用して、標的細胞への直接ルートを可能にする位置にピペットを置きます。
  6. コントロールに電気増幅器を演じる、オフセットピペットおよび出力電圧クランプモードでのテストパルス(10 MV)を調整します。
  7. 吸引によって30ミリバール(ピペットサイズに応じて) - 10に圧力を低下させます注射器のピストン。優しく細胞に近づき、ビデオカメラのモニターに画像を観察することによりディンプルの形成を確認してください。電気アンプ(あるいはあなたがピペットの抵抗を監視するためのコマンドLCGシールテストを使用することができます)に接続されたオシロスコープに表示された電流波形を見て、すべての回で抵抗の増大のための試験パルスを監視します。
  8. 圧力を解放し、必要に応じて、ピペット抵抗の増加と細胞の「ディンプル」の形成に気づくとき、シール形成を助けるために、ピペットに緩やかな負圧を適用します。
  9. シール形が、徐々にmVのを-70する保持電位を低下させます。
  10. ギガオームのシールが得られると、保持電流が0の間であることを確認 - pAの30。膜を破壊し、全細胞構成を確立するために、負圧(吸引)の短パルスを適用します。代わりに、(電圧の強力かつ簡単にパルスを注入することができますすなわち、使用準備とガラスピペットに応じて、膜を破裂させるために)アンプの「ZAP」コマンドを使用して、または非常に否定的で、細胞を保持します。
  11. 電流クランプモードに切り替えて、静止膜電位は、健康な細胞の典型的なものであることを確認します。カリウム·グルコン酸系溶液を用いて、皮質錐体ニューロンの場合、この値は-65と-75 mVの間に通常です。

4.ニューロンの電気的応答特性の半自動特性評価

  1. ユーザーのデータを格納するディレクトリを作成します。採用にスクリプトをこれを行うために日付に基づいてフォルダを作成しますLCGライブCDに含まれています。コマンドプロンプトで、タイプを​​、それを使用するには、
    CD〜/実験
    LCG作成-実験フォルダ-s PSP、in_vivo_like
    これは、そのセルのデータが保存されたフォルダ(およびサブフォルダ「in_vivo_like '' PSP 'と)を作成し、それは端末にその名前を印刷します窓;そのようなピペット抵抗と、このスクリプトを使用して、細胞型などの追加情報を格納することも可能です。
  2. コマンドを使用して、新しく作成したフォルダにディレクトリを変更
    CD〜/ <フォルダ>
    フォルダ名は20140331A01のように、コマンドLCG--実験フォルダを作成し、現在の日のタイムスタンプを持つことになります( つまり、年-月-日)で表示されるものです。
  3. 増幅器は、電流クランプモードで動作するように設定されていること、ケーブルが接続され、増幅器の外部電圧指令が、存在する場合は、有効になっていることを、確認してください。
  4. コマンドLCG-ecodeatにコマンドプロンプトを入力します。これは、細胞の基本的な応答特性を特徴づけるために使用される、一連のコマンド(すなわちLCG-AP、LCG-VI、LCG-ランプ、LCG-タウとLCG-工程)を呼び出します。セル内の単一のスパイクを誘発するために使用される現在の1ミリ秒の長パルスの振幅、および現在のラムの最大振幅:LCG-ECODEは、ユーザーが2つのパラメータを指定する必要がありますpは、その基電流を見つけるために、細胞に注入しました。
    次のコマンド構文を使用します。
    LCG-ECODE --pulse振幅X --ramp振幅Y
    1ミリ秒の長さのパルスとそれぞれ現在の持続注入に応答して細胞の火を作るのに十分である値Xと(ペンシルバニア州)のYの選択と。
    注:これらのプロトコルは、活性電極報酬(AEC)15を使用するために、「電極カーネル」の数値予測を行う必要があります。ノイズの多い電流注入は、カーネルを推定するために使用され、ユーザは、カーネルを構成するサンプルの数を確認するメッセージが表示されます。電極カーネルの意味とどのようにカーネルのサンプル数を選択することの詳細については、15を参照してください。

シミュレートされたシナプスとインビボ様背景活動のシミュレーションを通じコンダクタンスの5注射

  1. シミュレートされた興奮性シナプス後電位の注入
    1. あなたは、シェルのコマンドプロンプトで次のコマンドを入力して、次の実験を保存するディレクトリに移動します。
      CDのPSP / 01
    2. 現在のディレクトリにLCGの設定ファイルをコピーし、(この例のコンフィギュレーション·ファイルは、ソースコードとライブCDに含まれている)、シェルのコマンドプロンプトで次のコマンドを入力して(この例では、ナノ)テキストエディタで開きます:
      CP〜/ローカル/ SRC / LCG /構成/ epsp.xml
      ナノepsp.xml
      注:これは、単にお互いに接続された複数の異なるエンティティのテキストフ​​ァイルです。詳細については代表的な結果のセクションを参照してください。
    3. ユーザーの設定に合わせて、このファイルの必要に応じて編集inputChannel、outputChannel、inputConversionFactorとoutputConversionFactor。
    4. COMを発行することにより、「単一の電極ダイナミッククランプを実行するためにLCGで使用されるメソッド「活性電極補償を行うために必要な電極カーネルを計算しますマンド
      LCG-カーネル
      これは、カーネル内の点の数を入力するように求められます。電極カーネルは指数関数的減衰尾部の端部を覆うように、再び、番号を選択します。
    5. コマンドを使用して、ダイナミッククランプ実験を行います
      epsp.xml -c LCG-実験
    6. ファイルを一覧表示して、コマンドを使用して、結果を可視化
      LS -l
      最後の-f LCG-プロットファイル
  2. シミュレートされた抑制性シナプス後電位の注入
    1. フォルダを作成し、シェルのコマンドプロンプトで次のコマンドを入力して、それにepsp.xmlファイルをコピーします。
      MKDIR ../02
      CP epsp.xml ../02/ipsp.xml
      CD ../02
    2. テキストエディタを使用してコンフィギュレーションファイルを編集します。次に、モデルシナプスExp2Synapseのシナプス逆転電位と立ち上がりと立ち下がり時間の定数を変更します。
      パラメータ>
      -80
      0.8e-3
      10E-3
      <パラメータ>
      テキストエディタを終了します。
    3. 電極カーネルを計算し、シェルのコマンドプロンプトで次のコマンドを入力して、5.1のような実験を行います。
      LCG-カーネル
      ipsp.xml -c LCG-実験
    4. ファイルを一覧表示し、シェルのコマンドプロンプトで次のコマンドを入力して、結果を可視化します:
      LS -l
      LCG-プロット·ファイル-f
  3. in vivoでの様バックグラウンド活性のシミュレーション:
    1. 以前に示したように、シェルのコマンドプロンプトで次のコマンドを入力して、以下の実験を保存するディレクトリに移動します。
      CD ../../in_vivo_like/01
    2. LCGのソースディレクトリから、シェルのコマンドプロンプトで次のコマンドを入力して、コンフィギュレーションファイルをコピーします。
      CP〜/ローカル/ SRC / LCG /構成/ in_vivo_like.xml
      ナノin_vivo_like.xml
      注:このファイルは、単に以前のものを連結したものです。次に、抑制性および興奮性シナプスモデルを供給スパイク列を生成する2つのポアソン点過程は、バックグラウンド活性を生成します。
    3. 5.1.3で説明したように、ユーザーのセットアップのためのDAQ構成パラメータを調整して、エディタを終了します。
    4. 電極カーネルを計算し、シェルのコマンドプロンプトで次のコマンドを入力して、5.1のような実験を行います。
      LCG-カーネル
      10 -i 3 -n in_vivo_like.xml -c LCG-実験
      「-n 10」と「-i 3 'のスイッチは、刺激三秒の間隔で10回繰り返されるべきであることを示します。
    5. シェルのコマンドプロンプトで次のコマンドを使用して、生のトレースを可視化します:
      LCG-プロットファイル-fすべて

結果

前のセクションでは、L5錐体細胞の電気生理学的特性を特徴づけるために、ソフトウェアツールボックスのLCGを使用して、スライス標本におけるインビボ様シナプス活性を再作成する方法を説明してきました。コマンド·ライン·インターフェースと半自動プロトコルの使用は、生成されたデータの出力および品質に大きな影響を持つことができ、実験の再現性及び効率性を好みます。?...

ディスカッション

このテキストリアルタイムの実施のための完全なプロトコルでは、閉ループ単一細胞電気実験はパッチクランプ法とLCGと呼ばれる最近開発されたソフトウェアツールボックスを使用して、説明しました。録音の品質を最適化するためには、記録の設定が正しく、接地シールドと振動しないことが重要である:これは、一緒に刺激プロトコルのセクション全体を自動化する可能性のある細胞へ?...

開示事項

The authors have nothing to disclose.

謝辞

Financial support from the Flanders Research Foundation FWO (contract n. 12C9112N to DL), the 7th Framework Programme of the European Commission (Marie Curie Network “C7”, contract n. 238214; ICT Future Emerging Technology “ENLIGHTENMENT” project, contract n. 306502), the Interuniversity Attraction Poles Program initiated by the Belgian Science Policy Office (contract n. IUAP-VII/20), and the University of Antwerp is kindly acknowledged.

資料

NameCompanyCatalog NumberComments
Tissue slicerLeicaVT-1000S
Pipette pullerSutterP-97
PipettesWPI1B150F-41.5/0.84 mm OD/ID, with filament
Vibration isolation tableTMC20 Series
MicroscopeLeicaDMLFS40X Immersion Objective
ManipulatorsScientificaPatchStar
AmplifiersAxon InstrumentsMultiClamp 700BComputer controlled
Data acquisition cardNational InstrumentsPCI-6229Supported by Comedi Linux Drivers
Desktop computerDellOptiplex 7010 TowerOS: real-time Linux
OscilloscopesTektronixTDS-1002
Perfusion PumpGibsonMINIPULS3Used with R4 Pump head (F117606)
Temperature controllerMultichannel SystemsTC02PH01 Perfusion Cannula
ManometerTesto510Optional
IncubatorMemmertWB14
NaClSigma71376ACSF
KClSigmaP9541ACSF, ICS
NaH2PO4SigmaS3139ACSF
NaHCO3SigmaS6014ACSF
CaCl2SigmaC1016ACSF
MgCl2SigmaM8266ACSF
GlucoseSigmaG7528ACSF
K-GluconateSigmaG4500ICS
HEPESSigmaH3375ICS
Mg-ATPSigmaA9187ICS
Na2-GTPSigma51120ICS
Na2-PhosphocreatineSigmaP7936ICS

参考文献

  1. Saleem, A. B., Ayaz, A., Jeffery, K. J., Harris, K. D., Carandini, M. Integration of visual motion and locomotion in mouse visual cortex. Nature neuroscience. 16, 1864-1869 (2013).
  2. Ahrens, M. B., Li, J. M., et al. Brain-wide neuronal dynamics during motor adaptation in zebrafish. Nature. 485 (7399), 471-477 (2012).
  3. Paz, J. T., Davidson, T. J., et al. Closed-loop optogenetic control of thalamus as a tool for interrupting seizures after cortical injury. Nature neuroscience. 16 (1), 64-70 (2013).
  4. Wallach, A., Eytan, D., Gal, A., Zrenner, C., Marom, S. Neuronal response clamp. Frontiers in neuroengineering. 3 (April), 3 (2011).
  5. Linaro, D., Couto, J., Giugliano, M. Command-line cellular electrophysiology for conventional and real-time closed-loop experiments. Journal of neuroscience. 230, 5-19 (2014).
  6. Sharp, A., O’Neil, M., Abbott, L. F., Marder, E. Dynamic clamp: computer-generated conductances in real neurons. Journal of neurophysiology. 69 (3), 992-995 (1993).
  7. Robinson, H. P., Kawai, N. Injection of digitally synthesized synaptic conductance transients to measure the integrative properties of neurons. Journal of neuroscience methods. 49 (3), 157-165 (1993).
  8. Vervaeke, K., Hu, H., Graham, L. J., Storm, J. F. Contrasting effects of the persistent Na+ current on neuronal excitability and spike timing. Neuron. 49 (2), 257-270 (2006).
  9. White, J. A., Klink, R., Alonso, A., Kay, A. R. Noise from voltage-gated ion channels may influence neuronal dynamics in the entorhinal cortex. Journal of neurophysiology. 80 (1), 262-269 (1998).
  10. Destexhe, a., Rudolph, M., Fellous, J. M., Sejnowski, T. J. Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience. 107 (1), 13-24 (2001).
  11. Fellous, J. -. M. Regulation of Persistent Activity by Background Inhibition in an In Vitro Model of a Cortical Microcircuit. Cerebral Cortex. 13 (11), 1232-1241 (2003).
  12. Gal, A., Eytan, D., Wallach, A., Sandler, M., Schiller, J., Marom, S. Dynamics of excitability over extended timescales in cultured cortical neurons. The Journal of neuroscience. the official journal of the Society for Neuroscience. 30 (48), 16332-16342 (2010).
  13. Wang, Y., Toledo-Rodriguez, M., et al. Anatomical, physiological and molecular properties of Martinotti cells in the somatosensory cortex of the juvenile rat. The Journal of physiology. 561 (Pt 1), 65-90 (2004).
  14. Wang, Y., Gupta, A., Toledo-Rodriguez, M., Wu, C. Z., Markram, H. Anatomical, physiological, molecular and circuit properties of nest basket cells in the developing somatosensory cortex). Cerebral cortex (New York, N.Y). 12 (4), 395-410 (1991).
  15. Brette, R., Piwkowska, Z., et al. High-resolution intracellular recordings using a real-time computational model of the electrode. Neuron. 59 (3), 379-391 (2008).
  16. Rutishauser, U., Kotowicz, A., Laurent, G. A method for closed-loop presentation of sensory stimuli conditional on the internal brain-state of awake animals. Journal of neuroscience. 215 (1), 139-155 (2013).
  17. Margrie, T., Brecht, M., Sakmann, B. In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain. Pflugers Archiv European Journal of Physiology. 444 (4), 491-498 (2002).
  18. Graham, L., Schramm, A. In Vivo Dynamic-Clamp Manipulation of Extrinsic and Intrinsic Conductances: Functional Roles of Shunting Inhibition and I BK in Rat and Cat Cortex. Dynamic Clamp: From Principles to Applications. , (2008).
  19. Sakmann, B., Neher, E. . Single-channel recording. , (1995).
  20. Molleman, A. . Patch Clamping. , (2002).
  21. Davie, J. T., Kole, M. H. P., et al. Dendritic patch-clamp recording. Nature Protocols. 1 (3), 1235-1247 (2006).
  22. Gold, R. . The Axon Guide for Electrophysiolog., & Biophysics Laboratory Techniques... , (2007).
  23. Mainen, Z. F., Sejnowski, T. J. Reliability of spike timing in neocortical neurons. Science. 268 (5216), 1503-1506 (1995).
  24. Buzsáki, G. Action potential threshold of hippocampal pyramidal cells in vivo is increased by recent spiking activity. Neuroscience. 105 (1), 121-130 (2001).
  25. Koch, C., Segev, I. . Methods in Neuronal Modeling: From Synapses to Networks. , (1988).
  26. Silberberg, G., Markram, H. Disynaptic inhibition between neocortical pyramidal cells mediated by Martinotti cells. Neuron. 53 (5), 735-746 (2007).
  27. Berger, T. K., Silberberg, G., Perin, R., Markram, H. Brief bursts self-inhibit and correlate the pyramidal network. PLoS biology. 8 (9), (2010).
  28. Tsodyks, M., Pawelzik, K., Markram, H. Neural networks with dynamic synapses. Neural computation. 10 (4), 821-835 (1998).
  29. Kapfer, C., Glickfeld, L. L., Atallah, B. Supralinear increase of recurrent inhibition during sparse activity in the somatosensory cortex. Nature. 10 (6), 743-753 (2007).

転載および許可

このJoVE論文のテキスト又は図を再利用するための許可を申請します

許可を申請

さらに記事を探す

100

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved