JoVE Logo

サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

この記事について

  • 要約
  • 要約
  • 概要
  • プロトコル
  • 結果
  • ディスカッション
  • 開示事項
  • 謝辞
  • 資料
  • 参考文献
  • 転載および許可

要約

ポータブル イメージング手法 (機能的近赤外分光) 提供以前はアクセスできない領域では、脳の研究の進歩ここでは、農村のコートジボワール。メソッドおよびニューロ イメージングの文化的に適切なプロトコルの開発の技術革新は重要な貧困と逆境環境で脳の発達と子どもの学習成果の小説研究を許可します。

要約

ポータブル神経イメージング研究のアプローチは、脳機能と脳の発達以前にアクセスできない人口および遠隔地での研究に新たな進歩を提供します。本稿はコートジボワールの田舎の村の設定で子供の研究にフィールド機能的近赤外分光 (fNIRS) イメージングの開発言語、読書と認知発達を示します。方法と文化的に適切な神経イメージング研究プロトコルの開発の革新は、脳の発達と流環境で子どもたちの学習の成果に初めて見てを許可します。ニューロ イメージングの開発ガイド プレゼント同意プロシージャおよび意味のある建物と本稿を転送するためのプロトコルを示すし、研究所脳病態対フィールドに関する考慮事項携帯電話の研究を設定する長期地元の政府と科学のパートナーと連携。ポータブル神経画像診断法は、複雑な子開発コンテキスト、大幅な貧困と脳の発達に逆境の影響などを研究する使用ことができます。ここで提示されたプロトコルは、コートジボワール、ココアの世界の一次ソースで使用するため発展しており、子のレポートがココアのセクターの労働が多い。まだ、少しは脳の発達と学習に関する児童労働の影響について知られています。フィールド神経画像診断法には、世界的にこのような緊急の問題と子どもの発達に新しい洞察力をもたらす可能性があります。

概要

ポータブル fNIRS イメージング脳機能と開発研究所、以前はアクセスできない設定や流集団外を調査する機能を提供します。認知神経科学の領域における知識の多くは主に西欧諸国の大学や病院の研究室の設定で調査をイメージングから来ています。設計上、これは研究のほとんど話されての問題に貢献する: 脳について知られているものの多くは欧米諸国 (主に) で研究室設定がアクセスできる人の参加者と研究に基づいています。つまり、ほとんどのニューロ イメージング研究には、参加者在住ニューロ イメージング研究室に近接で、時間とリソースの研究に参加する必要があるが含まれます。学問として認知神経科学脳とその開発を形成する要因を理解することを目的-1,2,3を経験する子供の環境と彼らの早い生命の強力な効果を含みます。人間の経験の完全な範囲の開発を研究する分野の能力を進める方法は劇的に脳の発達とそれを形作る生活体験の複雑な関係の理解を進めることができます。

農村のサハラ以南のアフリカ、特に南部のコートジボワールで使用するために開発されたフィールドのニューロ イメージングのためのプロトコルを提案する.このフィールド神経イメージング研究プログラムの目的は、非識字の危険性が高い環境で子供の読解力を理解することでした。コートジボワールの青年 (15-24 歳) リテラシー率 93% 小学校入学率4にもかかわらず、53% です。コートジボワールは世界のココアの主なソースとココア農業セクター5の児童労働、推定 130 万があります。まだ、少しは脳の発達と学習、特に読むことを学習に児童労働の影響について知られています。すなわち、ポータブル神経画像診断法、認知神経科学の最新のツールを適用する貴重な洞察を子どもたちの学習の成果をもたらすことができます。たとえば、fNIRS のフィールド イメージング神経発達期間を識別対象の教育プログラムや介入が子供たちの学習成果に最大影響可能性がありますを許可できます。

fNIRS 脳は、フィールド研究に最適です。機能的磁気共鳴画像 (fMRI) と同様に、fNIRS 脳の血行力学的応答6を測定します。ただし、fNIRS は電磁界を生成するのではなく、バイオケミカル、光検出器の出力光のシリーズを使用します。金属またはテストの領域の近くに制限がない、電気シールドは脳波 (EEG) の場合と同様に、必要ありません。FNIRS の主な利点は、その移植性 (すなわち、いくつかのシステムは、スーツケースに収まることができる) と使いやすさです。fNIRS は子供で使いやすいも子供は実験中に椅子に座って快適と fNIRS システムよく fMRI と比較して運動を大目に見る。FMRI に比べ、fNIRS も対策を提供します個別脱酸素化 (HbR) と酸化ヘモグロビン (HbO) の録音中は、組み合わせて、血液の酸素レベル密度 (太字) の測定を生成する fMRI と比較して。fNIRS は fMRI を優れた時間分解能: サンプリング レートによって異なります 〜 7-15 Hz fNIRS は空間分解能: 人間の皮質の記録の fNIRS の深さが fMRI、勉強に適していますの深さ約 3 に 4 cm 未満。皮質機能、特に乳児と大人3,7,8,9,10より薄く頭蓋骨を持つ子どもたち。

このフィールドのニューロ イメージング プロトコルは、連れと低リソースのコンテキストでポータブルのニューロ イメージング研究室のセットアップに関する考慮事項をについて説明します。プロトコルはまたローカル科学パートナーと地域の科学の能力を構築するのに役立つこのアプローチ、方法、意味のある、長期的なコラボレーションの本質を強調します。イメージング研究の文化的に適切なインフォームド・コンセントの手順を作成するための推奨事項を含む言語、読書、および認知課題のバッテリーから fNIRS 脳データ収集および分析のためのニューロ イメージング プロトコルが示されています。このプロトコルは、農村コートジボワール歳小学校児童の認知発達研究のために設計されています、プロトコルは挑戦的な低リソース環境である任意フィールドの脳機能イメージング研究の関連性の高いと小説の適応することができます。コンテキストです。

プロトコル

ここで説明したすべてのメソッドは、デラウェア大学の制度審査委員会 (IRB) によって承認されています。

1. モバイル研究所輸送とセットアップ

  1. FNIRS 装置と一緒に旅行
    1. FNIRS 装置を輸送します。
      注: fNIRS 装置は、大手国際航空会社の手荷物として運ぶことができるが、それは特定の航空会社を確認することが不可欠。機器制限は、起源や仕向け国によって異なる場合があります。また、fNIRS 装置を出荷することができます。
    2. インポートまたは送り先の国の fNIRS 装置と一緒に旅行するための手順を知っているし、該当する場合は、適切なインポート承認ドキュメントを取得します。
    3. 検査に備えます。
      注: 機関 (例えば、運輸保安局) は、受託手荷物を検査する権利を有します。壊れやすい fNIRS 光ファイバーは、検査中に破損する可能性があります。すべての機器に合わせて適切なマニュアルを手配します。
  2. フィールドで不可欠な実験装置
    1. フィールドは気候変動に備えます。
      注: フィールドで温度と湿度の条件研究室の設定から大きく異なることが、実験中に設備機能、長寿と参加者の快適さに影響を与える可能性があります。エレクトロニクス高湿度状態で一般的に 60% 以上、腐食しやすく、過度の湿気はパーツで解決でき、金属成分と反応です。屋内ラボ (例えば、大学建物の中) で湿気のレベルは、一般に 30-50% の間。南部のコートジボワールで湿度 80-95% となります。低消費電力の要求にポータブルエアコン ユニットを設定します。
    2. 電気の十分な供給を確保します。電気供給、農村部の設定で利用できないかもしれないまたはのみ断続的に、または不十分なワット数を機能可能性があります、使用電源中小企業ポータブル太陽光発電機電子のサイズ。利用できるようにディーゼル発電機のバックアップ電源として。農村のコンテキストで電気供給課題に精通したローカル電気技師を採用してください。
    3. 不透明および防水の屋根と壁の大規模なカスタマイズされたテントなど最小限のセットアップ時間と適切な構造体を準備します。
      注: 設備 (例えば、ローカル学校で教室)、利用可能なまたは防水と静かな空間をテストを提供する可能性があります。
  3. ポータブル研究室 (図 1) を設定します。
    1. 携帯電話の研究 (例えば、カスタマイズされたテント) を組み立てます。研究室が 2 つの実験者、刺激プレゼンテーションのコンピューター、fNIRS のデータ収集用コンピューター、fNIRS のポータブル ユニット、三次元 (3 D) デジタイザーとポータブル席、机に参加者の座席を収容できる大きさであることを確認します。エアコン。

figure-protocol-1511
図 1。概略図。(A) 実験室のセットアップの模式図。(B) データ収集の参加者を準備します。この図の拡大版を表示するのにはここをクリックしてください

2. 現地調査チームと科学パートナー

  1. 科学的なコラボレーションの形成に投資し、現地研究者に研究の枠組みの中で機会を提供します。
  2. Inclusivity を目的として地元学術機関とのパートナーシップを確立します。ローカル レベルで仲間から認識を得ることは、最終的な研究の地域を見つけることを通信することが重要です。
  3. 任意の調査を承認し運用するライセンスを受ける活動前に、関係する地方自治体を参照してください。対象国の倫理審査の手順を理解して、適切な宿泊施設を作る場所の正式な科学的な評価手順が見つからない場合。
    注: たとえばとの直接通信および省の高等教育と研究 (または匹敵する政府機関) の代表者から承認すること倫理審査手順の代わりに。

3. インフォームド コンセントと子同意

  1. 参加者、家族およびコミュニティが研究と、研究に参加する彼らの決定について通知されることにより、文化的に適切な同意プロシージャを開発します。
  2. 地元の習慣や一般的なプロトコルの開発の歴史を確認し、誰と研究を実施する必要がありますグループのメンバーが含まれます。
    1. 研究に進む前にローカル行事 (例えば村長、コミュニティの長老たち、) から明確な同意を得ることを確認してください。
      注: これは先祖祝福することコミュニティの典型的な他の手段によって表現することがあります。村長からの同意後文化習慣が地球上にワインを注ぐと承認し、研究活動を祝福する祖先を求めてあります。
  3. 形式的なレベルで承認された学校の活動子どもの参加に関する決定を行うための責任がある親と教育者のグループの同意を求めます。たとえば、親教師のグループ ('Comité ・ デ ・輻輳カマーシャル d'Ecoles - COGES' コートジボワールで) 主要な関係者は、意思と自分たちの利益を守るために学生の両親によって任命されたメンバーで構成される国家主な教育システム子供の教育に関連する他のすべての側面。
  4. 教育省の高等教育や研究のコートジボワール省などの地方自治体がすべての研究活動を承認します。プロジェクトを取る国の場所に IRB を倫理的な承認のための正式な手順がないです。研究のための倫理的な承認を取得するための正しいプロトコルに従っていることを確認する規則を確認してください。
    注: 承認取得の時に、コートジボワールしても正式な IRB レビュー プロセスは持っていなかった。代わりに、この研究チームは教育省に提出する IRB アプリケーションに似ているドキュメントを準備することによって進んだ。複数の会議は教育省高等教育省と整理された、グループ ディスカッションと質問と回答セッションに続いて、すべての関係者に研究関係者の研究チームが研究提案を提示ください。倫理的な承認は、特定の学校で子供たちと研究を行うための許可を許可する署名された文書の形で教育省から直接得られました。本研究は、デラウェア大学 IRB から倫理的な承認を受け取った。
  5. 子供の同意手続きで参加した子供たちに簡単な言葉で研究目的を説明します。地域社会が、子供の場合可能性があります同意参加または文化的な予想のためにこれを行う、彼らの不賛成にもかかわらず研究に参加し続け、子供の服従と高付加価値します。同意手続きは慎重に研究に自主的な参加と通信することを確認します。
  6. 明確に定義、研究参加者利益になる方法と研究の彼らの参加のための補償を受け取ります。補償は適切な文化的と参加者の両方を確認します。
  7. すべての同意を行い、言語および文化的なグループのメンバーでもある人の研究チームの訓練を受けたメンバーが参加者のローカルまたは優先言語の手順に同意します。

4. fNIRS 頭皮配置および測定

  1. 頭の測定値を収集
    1. 椅子の上に座る参加者し、頭部を計測中に予想されるプロセスを説明します。
    2. 標準巻尺を使って測定間の距離: (1) ナジオンと頭 (2) を用い、正中線中央 (Cz)11と (3) の上に左と右耳の耳珠の間の距離を頭の上にイニオン イニオンCz を介しての頭。
  2. FNIRS のキャップとバイオケミカル参加者の頭の上の配置3,8,9,12
    1. 頭皮の場所11国際 10-20 システムにキャップを合わせ参加者の頭の上に fNIRS イオン ホルダー キャップを置きます。キャップの位置がすべての参加者に対して同じであることを確認します。頭皮の位置 (例えば、プローブ ホルダー) キャップ上の点に合わせます。
      注: たとえば、間 (FP) 位置に頭の上のキャップのフロント ・ センターします。この位置は、トップ遠距離ナジオン位置の背側頭骨イニオンの 10% に対応します。
    2. ストラップ付きキャップを確保し、参加者が快適なことを確認します。
  3. 3 D デジタイザー測定
    1. キャップは、位置、キーの 3 D デジタイザー測定の取得 10-20 システム頭皮位置11および各イオンのプレース ホルダーの位置にまだ座っている参加者に指示します。
    2. 3 D デジタイザー機器を手配します。参加者のセンサーが 1 つの場所の Cz で頭で安全に貼付 (すなわち弾性や髪を使用してアクセサリ) と参加者の背後にある 2 番目のブロックのセンサーを設置。テーブルに戻って彼等の椅子に着席するよう伝えます。参加者の頭の後ろに直接テーブルの上には、2 番目のセンサーを配置します。どちらのセンサーは、3 D デジタイザー測定の取得のコースの間に移動します。
    3. データ コレクションのコンピューターにブレイン ストーム ソフトウェア13を開きます。3 D デジタイザー システムは、適切な COM ポートを通じて Brainstorm ソフトウェアとの通信を確認します。
    4. 3 D デジタイザー スタイラス各プローブの場所と移動キーにわたって 10-20 システム位置 (頭骨、イニオン、左耳、右耳、Cz)。それぞれの場所でのデータ収集用コンピューターにブレインストーミング機能で位置データを取得します。
  4. 頭皮に光発光バイオケミカルと検出器を配置すること
    1. 3 D デジタイザー データ収集している後刺激プレゼンテーション コンピューターの前で快適に着席するよう参加者に指示します。
    2. FNIRS の組み込みソフトウェアを使用して、実験デザインに対応するプローブの配置を選択します。頭全体をカバーするため fNIRS のプローブを配置ことができます (すなわち、完全なヘッド適用範囲)、または興味の一般的な領域の上または、配列を配置できます。たとえば、このプロトコルは、10 x 3 プローブ アレイ (30 プローブ 10 プローブの 3 行に配置) を使用しました。このプローブの配置は、左脳の言語領域は、右半球の同族体と前頭葉 (図 2) を最大限にオーバーレイする置かれました。
    3. (エミッタとデテクタ) 各プローブには番号がナンバリング システムはプローブ配置図に対応することを確認します。
    4. ガイドとして作り付けソフトウェア、fNIRS のイオン マップを使用、上のキャップを開く適切なイオンの各イオンを配置します。イオンの地図は、各イオン (例えば10 x 3) の配列内の位置を示します。
    5. 方法のうち、イオンの先端と参加者の頭皮との間の直接の接触を確実にすべての髪を移動します。
    6. すべてバイオケミカルは位置にした後、fNIRS システム組み込みソフトウェアを使用して信号の品質を確認します。
    7. 十分な信号品質が得られるまで、必要に応じて個々 のプローブを調整します。すべてバイオケミカル信号品質チェックに合格したら、一度実験的タスクを続行します。

5. 実験課題

  1. 試験・研究の目的に沿った条件の適切な数を持つ各ニューロ イメージング タスクをデザインします。ニューロ イメージング タスクは調査目的によって異なることを理解します。たとえば、3 つのタスクは、このプロトコルで使用されていた: (1) 言語処理とタスク、(2) 韻判断タスク、および (3) の認知の柔軟性のタスクを読んでします。
    注: 韻判断タスクの手順 (と代表的な結果) がハイライトされます。
  2. FNIRS のプローブを妨げることに注意すること、参加者の頭の上には、雑音を取り消すヘッドフォンを配置します。そのヘッドフォンが参加者での聴覚音声刺激を提供し同様、周囲の騒音をブロックを確認します。
    注: 検査音の減衰部屋で場所をとります。フィールド検査、同程度のノイズ コントロールを行わないし、雑音を取り消すヘッドフォンは、すべての参加者のための静かな試験条件を確保できます。
  3. コンピューターのモニターに直面し、画面の真ん中にクロスにこだわると、実験中にまだままに参加者に指示します。コンピューターの画面上すべての実験課題を提示します。
  4. 韻判断タスク
    1. ヘッドフォンを通して聴覚提示単語ペアに耳を傾ける参加者に指示します。キーボードの単語のペアか韻を踏んだ (例えば、 '猫'-'帽子' または '猫'-' ログ') ボタンを押すかどうかを示す参加者を求めます。
    2. この例では、イベントを使用して、関連するデザイン。参加者完了 12 非-韻を踏むと 8 と 17 s 間のジッターを含む刺激間間隔で区切られた 12 の韻を踏む試験てみましょう。
      注: タスクは、参加者に適した方法で作成する必要があります。ここで参照研究で、研究者は言語、認知、および子供たち非常に貧しい読者の読解力を調査していました。読んで最低限の識字能力を持つ子供に適切であろう言葉でニューロ イメージング タスクを開発。同様に、子どもたちは読書査定で得られたスコアに基づく神経イメージング研究パラダイムに選ばれました。
  5. 薄暗い照明と組み込みのビデオカメラの参加者の記録を開始します。
  6. FNIRS データ fNIRS コマンド コンピューターに記録を開始し、刺激プレゼンテーション コンピューター上でタスクを開始します。
  7. すべてのタスクを通して参加者のパフォーマンスを監視します。タスクと実行の間の休憩を提供します。
  8. FNIRS コマンド コンピューターによって実験的刺激プレゼンテーションのコンピューターからトリガーを受信することを確認します。
  9. すべてのタスクの最後には、ビデオ、fNIRS のデータの収集を停止します。

6. 後実験測定

  1. イオン ホルダー キャップから各イオンを削除します。
  2. 参加者の頭の上のイオン ホルダー キャップの位置を中断せずに 2 番目の 3 D デジタイザー測定を取得する位置に座る参加者を直接します。
  3. FNIRS 頭皮配置のように 3 D デジタイザー測定と実験中にプローブの位置を頭皮に混乱が 2 つの位置のファイルの比較によって認識されることを確認する測定セクション 4 を繰り返します。
  4. 参加者の頭からイオン ホルダー キャップを削除します。
  5. 実験の終わりには、彼らの参加のため (例えば書籍や学校用品) のささやかな贈り物と研究チームの謝辞を参加者を提供します。

7. データの普及のための計画します。

  1. コミュニティ メンバーや関連自治体調査問題の対処方針に最終的な翻訳と研究成果を共有します。
    注: 参加者の実験から直接利益がないです。
  2. 参加しているコミュニティへのフォロー アップの訪問の計画を立てます。レポートとローカル教育者が使用できるツールを準備します。たとえば、現地の言語で作成された任意の査定可能地域の学校関係者に。調査の調査結果を通信するための地域社会のリーダーに会うためにローカル言語を話す研究チームのメンバーを準備します。
  3. 該当地域の学術論文や、地域の言語の調査の調査結果を公開する計画を立てます。たとえば、フランス語圏の国で調査した場合調査の調査結果をフランス語で播種する必要があります。
  4. 会うし、研究プログラムのための承認を与えられた政府の枝に調査の調査結果のレポートを配信する計画を立てます。

8. バックアップ データ

  1. オンライン データ ストレージのインター ネット アクセスが可能なデータがエクスポートされ、複数のポータブル ハード ドライブにバックアップされていることを確認します。十分なインターネット接続が利用できるよう、オンライン データ ストレージにデータを転送します。

9. データの分析

注: 複数のデータ分析パッケージは、fNIRS14。近赤外分光法 (NIRS SPM)15 、Homer216 (広く)、fNIRS ツールボックス17,18 (新規獲得の人気) に統計的パラメトリック マッピング、fNIRS のデータ解析のために使用されます。このプロトコルのレビュー、放医研 SPM を用いたデータ分析手法、分析の方法を選択する研究員の裁量にです。

  1. バージョン 415,19、放医研 SPM を用いた fNIRS システムからのデータを分析します。ニューロ イメージング スイート SPM8 (http://www.fil.ion.ucl.ac.uk/spm) のこのツールボックスは、一般線形モデル分析による NIRS データを分析し、超解像の局在と活性化マップの作成が可能します。
  2. HbO と HbR へのデータ変換
    1. HbO と HbR の応答の濃度変化に光学密度値に変換する (SPM) 放医研のようなビール ランバートの方程式を使用します。
  3. データ前処理
    1. FNIRS のデータを前処理するために存在する複数のオプションのいずれかを使用します。
      注: ユペール17は、ノイズ16のさまざまなソースの非常に厳格な方式を提案します。データ (例えば呼吸、血圧、心拍数) でモーション アイテム、バンドパス フィルタ リング技術、生理学的な干渉空間共分散の低減を固有ベクトルをベースの固有ベクトルをベース削減が挙げられます。彼らはまた、fNIRS 研究と統計解析のための含意のノイズ源の徹底的な解説を共有します。FNIRS 研究員は、特定の研究に最も適した前処理アプリケーションを調べる必要があります。以下では、解析の手法を模した Worsely において20と張19が表示されます。
    2. 呼吸、血圧変動、皮膚血管運動、または参加者の運動成果物からして、その結果世界的な傾向を除去するためにウェーブレット最小記述長 (MDL) detrending アルゴリズムを用いた HbO と臭化水素酸の濃度の変化を分解します。19信号対雑音比を向上させます。
    3. データと使用に血行動態の応答関数の形状を持つ低域通過フィルターを適用、Worsely において20 precoloring 的相関を削除するメソッド。
  4. モデルの生成と統計的解析
    1. HbO の HbR 時間誘導体21で対応する血行力学的応答関数と畳み込ま実験のリグレッサを含むモデルを生成します。
      注: 血行動態応答関数高い皮質で、参加者間で大きく変動していることができます。分析モデルは、変動のこれらのタイプを収容時間的誘導体を含むように HRF を拡大できます。血行動態の21をピークに時間のモデル違いに一時的な派生物を使用します。
    2. HbO のために合うモデルを大幅に濃度の増加ことを示しますので、極性を反対と HbR の HbO と HbR のモデルの作成に使用放医研 SPM 濃度5,18を減少しました。
    3. 実験関連tを設定-テストまたはF-fNIRS 時系列データの変調方式 (デザイン マトリックスを与えられる) 1 つ (または複数) のリグレッサの効果をテストするためコントラストをテストします。
  5. 結果を可視化します。
    1. 3 D デジタイザーのデータを使ってモントリオール神経研究所 (MNI) 空間に放医研チャンネルの空間登録を実行します。
    2. 一般的な線形モデルと太陽のチューブ式補正22,23に基づく総ヘモグロビン (バーツ)、HbR、HbO の活性化マップを作成するのに登録 fNIRS のデータを使用します。
    3. 活性化脳に適切なテンプレートにマップをロードします。たとえば、最近ハスキンズ小児脳アトラスは年齢24の 6 〜 12 歳のお子様の標準化されたテンプレートを提供します。

結果

標準脳テンプレートには、3 D デジタイザー (図 2) によって得られるプローブ位置データを視覚化できます。FNIRS MNI 空間放医研 SPM のスタンドアロン登録関数25を使用してチャネルを登録します。MNI 座標、解剖学的ラベル、および最大限に各チャンネルによって表されるブロードマンの領域空間の登録関数を生成します。

ディスカッション

この論文では、遠隔地の低リソース コンテキストに適したフィールド イメージング プロトコルを発表しました。このフィールド イメージング プロトコルのキーの前進は脳機能を研究する初めて能力とその開発けいこ (または決して-前に勉強した) コンテキスト。このプロトコルの重要なステップは連れなど電気や利用可能な設備がない熱帯気候で品質データ収集に適したモバイル研究所を...

開示事項

著者が明らかに何もありません。

謝辞

この研究は k. Jasinska にジェイコブス財団初期キャリア親睦を通じて可能になった (交わり数: 2015 118455)。著者はまたデータ収集およびフィールド ・ サポートのアクセル Blahoua、ファブリス Tanoh、アリアン アモン、ブライス カンガ、イヴェット フォトを確認したいです。この研究プログラムと村の温かいおもてなしに参加するための Moapé、Ananguié、Affery、および Becouefin の児とその家族に感謝します。

資料

NameCompanyCatalog NumberComments
LIGHTNIRS Main Unit Pack 120VShimadzu292-34000-42Component of the fNIRS system
HOLDER ASSY, ALL- CAPShimadzu594-07618-01Component of the fNIRS system
LIGHTNIRS connection cableShimadzu567-10976-11fNIRS system component
Fiber set for LIGHTNIRS, 1m (8 sets)Shimadzu567-11350-01fNIRS system component
Dell Latitude LaptopShimadzu (from Dell)220-97322-00Master computer to run fNIRS applications
PATRIOT SEU (System Electronics Unit)POLHEMUS1A0453-001PATRIOT System component
Power SupplyPOLHEMUS2C0809PATRIOT System component
Power Supply cordPOLHEMUS17500B-BLKPATRIOT System component
RS-232 null modem cablePOLHEMUS1C0288PATRIOT System component
USB cablePOLHEMUS1C0289PATRIOT System component
RX2 Sensor 10' cablePOLHEMUS4A0492-20PATRIOT System component
TX2 Source 10' cablePOLHEMUS4A0506-20PATRIOT System component

参考文献

  1. Dawson, G., Ashman, S. B., Carver, L. J. The role of early experience in shaping behavioral and brain development and its implications for social policy. Dev Psychopathol. 12 (4), 695-712 (2000).
  2. Blair, C., Raver, C. C. Poverty, Stress, and Brain Development: New Directions for Prevention and Intervention. Acad Pediatr. 16 (3 Suppl), S30-S36 (2016).
  3. Jasińska, K. K., Petitto, L. A. How age of bilingual exposure can change the neural systems for language in the developing brain: A functional near infrared spectroscopy investigation of syntactic processing in monolingual and bilingual children. Dev Cogn Neurosci. 6c, 87-101 (2013).
  4. Statistics, U. I. f. . Côte d'Ivoire. , (2017).
  5. University, T. . 2013/14 Survey Research on Child Labor in West African Cocoa Growing Areas. , (2015).
  6. Cui, X., Bray, S., Bryant, D. M., Glover, G. H., Reiss, A. L. A quantitative comparison of NIRS and fMRI across multiple cognitive tasks. Neuroimage. 54 (4), 2808-2821 (2011).
  7. Quaresima, V., Bisconti, S., Ferrari, M. A brief review on the use of functional near-infrared spectroscopy (fNIRS) for language imaging studies in human newborns and adults. Brain Lang. 121 (2), 79-89 (2012).
  8. Jasińska, K. K., Berens, M. S., Kovelman, I., Petitto, L. A. Bilingualism yields language-specific plasticity in left hemisphere's circuitry for learning to read in young children. Neuropsychologia. 98, 34-45 (2016).
  9. Jasińska, K. K., Petitto, L. A. Development of neural systems for reading in the monolingual and bilingual brain: new insights from functional near infrared spectroscopy neuroimaging. Dev Neuropsychol. 39 (6), 421-439 (2014).
  10. Petitto, L., et al. The "Perceptual Wedge Hypothesis" as the basis for bilingual babies' phonetic processing advantage: new insights from fNIRS brain imaging. Brain Lang. 121 (2), 130-143 (2012).
  11. Jasper, H. H. Report of the Committee on Methods of Clinical Examination in Electroencephalography. Electroencephalogr Clin Neurophysiol. 10 (2), 370-371 (1958).
  12. Shalinsky, M. H., Kovelman, I., Berens, M. S., Petitto, L. A. Exploring Cognitive Functions in Babies, Children & Adults with Near Infrared Spectroscopy. Journal of visualized experiments. (29), (2009).
  13. Tadel, F., Baillet, S., Mosher, J. C., Pantazis, D., Leahy, R. M. Brainstorm: a user-friendly application for MEG/EEG analysis. Comput Intell Neurosci. 2011, 879716 (2011).
  14. Tak, S., Ye, J. C. Statistical analysis of fNIRS data: A comprehensive review. Neuroimage. 85, Part 1, 72-91 (2014).
  15. Ye, J. C., Tak, S., Jang, K. E., Jung, J., Jang, J. NIRS-SPM: statistical parametric mapping for near-infrared spectroscopy. Neuroimage. 44 (2), 428-447 (2009).
  16. Huppert, T. J. T. J., Diamond, S. G. S. G., Franceschini, M. A. M. A., Boas, D. A. D. A. HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain. Appl Opt. 48 (10), D280-D298 (2009).
  17. Huppert, T. J. Commentary on the statistical properties of noise and its implication on general linear models in functional near-infrared spectroscopy. Neurophotonics. 3 (1), 010401 (2016).
  18. Rosso, A. L., et al. Neuroimaging of an attention demanding dual-task during dynamic postural control. Gait Posture. 57, 193-198 (2017).
  19. Jang, K. E. K. E., et al. Wavelet minimum description length detrending for near-infrared spectroscopy. Journal of Biomedical Optics. 14 (3), 034004-034004 (2009).
  20. Worsley, K. J., Friston, K. J. Analysis of fMRI time-series revisited--again. Neuroimage. 2 (3), 173-181 (1995).
  21. Friston, K. J., Josephs, O., Rees, G., Turner, R. Nonlinear event-related responses in fMRI. Magn Reson Med. 39 (1), 41-52 (1998).
  22. Sun, J. Y. Tail Probabilities of the Maxima of Gaussain Random-Fields. The Annals of Probability. 21 (1), 34-71 (1993).
  23. Sun, J. Y., Loader, C. R. Simultaneous Confidence Bands for Linear-Regression and Smoothing. The Annals of Statistics. 22 (3), 1328-1345 (1994).
  24. Molfese, P. J., Glen, D., Mesite, L., Pugh, K., Cox, R. . Organization of Human Brain Mapping. , (2015).
  25. Singh, A. K., Okamoto, M., Dan, H., Jurcak, V., Dan, I. Spatial registration of multichannel multi-subject fNIRS data to MNI space without MRI. Neuroimage. 27 (4), 842-851 (2005).
  26. Krosin, M. T., Klitzman, R., Levin, B., Cheng, J., Ranney, M. L. Problems in comprehension of informed consent in rural and peri-urban Mali, West Africa. Clinical Trials. 3, (2006).
  27. Leach, A. An evaluation of the informed consent procedure used during a trial of a Haemophilus influenzae type B conjugate vaccine undertaken in The Gambia, West Africa. Soc Sci Med. 48, (1999).
  28. Molyneux, C. S., Peshu, N., Marsh, K. Understanding of informed consent in a low-income setting: three case studies from the Kenyan Coast. Soc Sci Med. 59, (2004).
  29. Oduro, A. R. Understanding and retention of the informed consent process among parents in rural northern Ghana. BMC Med Ethics. 9 (1), 1-9 (2008).
  30. Tindana, P. O., Kass, N., Akweongo, P. The Informed Consent Process in a Rural African Setting:: A Case Study of the Kassena-Nankana District of Northern Ghana. IRB. 28 (3), 1-6 (2006).
  31. Lloyd-Fox, S., et al. fNIRS in Africa & Asia: an Objective Measure of Cognitive Development for Global Health Settings. The FASEB Journal. 30 (1 Supplement), (2016).
  32. Storrs, C. . Nature News. , (2018).
  33. Lloyd-Fox, S., et al. Functional near infrared spectroscopy (fNIRS) to assess cognitive function in infants in rural Africa. Sci Rep. 4, 4740 (2014).
  34. Papademetriou, M. D., et al. Optical imaging of brain activation in Gambian infants. Adv Exp Med Biol. 812, 263-269 (2014).

転載および許可

このJoVE論文のテキスト又は図を再利用するための許可を申請します

許可を申請

さらに記事を探す

132 fNIRS

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved