JoVE Logo

サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

この記事について

  • 要約
  • 要約
  • 概要
  • プロトコル
  • 結果
  • ディスカッション
  • 開示事項
  • 謝辞
  • 資料
  • 参考文献
  • 転載および許可

要約

この記事では、フィールド設定の参加者のライト スイッチング動作に関するデータを収集できる占有率とライト データ ロガーを使用および展開する手順について説明します。

要約

自己報告と観察されたプロ環境行動の間の不一致のために、研究者は行動のより直接的な手段の使用を示唆している。直接的な行動観察は、研究の外部の妥当性と一般化可能性を高める可能性がありますが、時間がかかり、実験者や観察者のバイアスの影響を受ける可能性があります。これらの問題に対処するために、自然観察の代替としてデータロガーを使用することで、研究者は参加者の自然発生行動を中断することなく、幅広い研究を行うことができます。この記事では、このようなツールの 1 つである占有率と軽量データ ロガーについて、技術的な説明、展開プロトコル、および心理実験で可能なアプリケーションに関する情報について説明します。人間の観察と比較してロガーの信頼性をテストした結果は、公衆トイレ(N = 1,148)での15日間の測定中に収集されたデータの例と一緒に提供されます: 1) 部屋の占有率の変化;2)室内光の変化;3)部屋の占有時間。

概要

心理学における環境保護行動の最も一般的に使用される措置の1つは、調査、インタビュー、またはアンケート1の形での自己報告です。この傾向に示される理由の中で、単にフィールド実験を行うのが難しいだけで、通常はかなりの量のリソースと正確な運用化を必要としますしかし、自己申告措置に頼ることは客観的な行動4、5、6の予測において誤解を招く可能性があることは十分に確立されているのでトレードオフは努力の価値がある。

この問題を回避しようとしている間、省エネルギー行動の研究に焦点を当てた研究者は、一般に観察(例えば、観測事象の公称分類、例えば、オン/オフライトのオン/オフ)または残留(例えば、kWhにおけるエネルギー消費量)データを従属変数7の測定値として使用する。どちらのタイプの測定値も貴重ですが、観測データは、特に従属変数が光切り替え動作に関する場合に、フィールド実験2、3、8で最も一般的に使用されます。

観測データを取得する前に、研究者はいくつかの方法論的な問題、つまり1)サンプルの代表性を考慮する必要があります。2)可能な人為的ミスを除外するためにオブザーバーの数。3)実験者バイアスを除外するためにオブザーバー間契約;4)観察者の場所は、参加者によって発見される可能性を減らすために隠されるべきである。5)明確かつ具体的に定義された観察符号;6)観察措置の事前テスト;7)オブザーバートレーニング;および8)観察9の体系的なタイミングを確立する。前述の問題のほとんどは、信頼性分析10や符号化観測データ11などに関するものなど、すでに取り組んでいるものの、光スイッチング挙動の実験を説明する記事では、すべての問題があまり注目されていないようです。

実験的な文脈における類似性のために選ばれた4つの研究12、13、14、15の分析(それらのすべては、公衆浴場/トイレにおける光切り替え行動に関する)は、各研究の位置の詳細が正確であったにもかかわらず、観察測定の詳細が変化することを示した。各研究は自然主義的な観察を採用したため、観察者の異性であった参加者の行動に関する情報を収集することは、干渉や社会規範の違反の可能性のために常に14が可能であるとは限りません(例えば、男性の実験者が女性のトイレに入るか、またはその逆)。場合によっては、参加者の性別の正確なデータが15を提供されませんでした。これは、ジェンダーがプロ環境行動16を予測する上で重要な要因となることを考慮する際の制限であると思われる。

しかし、最も大きな違いは、観測点と測定時間の説明で明らかになりました。これらの記述は実験場所によって自然に異なりますが、観測者の正確な数は必ずしも14を提供されませんでした。さらに、観測者の正確な位置は明示的な12、14、15ではなく、可能な複製を行うことが困難であり、参加者が観察されることに気付かないようにしました。分析された 4 つの記事にまたがって、オブザーバーの場所13の詳細な説明を提供したのは 1 つだけです。

また、観察間隔の正確な時間は1つの研究12によってのみ提供されたが、他の研究は全体的な研究時間(観察が行われた各研究日に何回の一般的な記述を用いる)13、15または全て14で説明しなかったかのいずれかである。これにより、観測のタイミングが体系的で、研究の目的に十分であったかどうかを複製し、確立することができます。

これらの実験の限界は、今後の研究で考慮すべきガイドラインと重要なポイントとして提示されます。いずれにせよ、これらの研究の重要性を損なうことを意図したものではない。示された領域は、心理学17、18において重要な役割を果たし、フィールド実験の実施を簡素化する複製を容易にするために、研究運用を最大化するために考慮されるべきである。しかし、最終的に人間の観察者に依存する観察方法を改善することで、上記の問題のすべてに対処できるかどうかは疑わしい。

これらの理由から、占有率とライトデータロガー(材料表を参照)は、観察者や倫理的制限を使用する制限なしに、特定のタイプの省エネ行動、ライトスイッチングに関する情報を収集するために効果的に使用できる貴重なツールです(ロガーはオーディオビジュアルデータを収集しません)。全体的に、この記事の目的は、占有率と軽いデータロガーの1つのモデルの技術的な説明と可能性を提示することです。著者の知る限りでは、これは心理学におけるフィールド実験におけるその使用の文脈でこのツールを徹底的に提示する最初の試みです。

ロガーの技術的な説明
この記事で使用した占有/光データロガーのモデル(材料表を参照)には、128 kBの標準メモリ容量が搭載されていました。ロガー重量30gとそのサイズは3.66 cm × 8.48 cm × 2.36 cm. 詳細と製品マニュアルは、メーカーのウェブサイト19で見つけることができます。

コントロールボタン、光センサー、バッテリートレイは上部パネルにあります。フロントパネルは占有センサーと液晶画面で構成され、背面パネルには取り付けマグネットとループが装備されています(図1)。USB 2.0 ポートは下部パネルにあり、展開前にセットアップを有効にし、後でこのデータ ロガー専用の分析ソフトウェア パッケージを使用して読み出しを取得するために、USB ケーブルを使用してコンピュータにロガーを接続できるようにします。

統合された光センサー(フォトセル)しきい値は65 lxより大きく、ほとんどの公共スペースで見つけることができるさまざまな光タイプ(LED、CFL、蛍光、HID、白熱、自然)で動作します。全体的に、ロガーは、光信号の強度に応じて、より正確には、キャリブレーションしきい値のレベルを下回るか上昇するかに応じて、光ステータスの変化(ON/OFF)を解釈します。また、センサは、約±12.5%19の内蔵ヒステリシスレベルによってONおよびOFF状態の誤検出から確保されることに留意すべきである。

モーション センサーは、部屋が占有されているか空き家であるかを判断します。焦電赤外線(PIR)センサーを使用すると、体温(周囲の温度とは異なる)によって人々の動きを検出します。議論されたロガーの検出範囲は最大5 mで、ロガーの拡張版は12 mの範囲を有し、水平検出性能は94°(±47°)まで働き、そして82°(±41°)まで縦に働く。

占有/光データロガーの記述されたモデルは、オープンソースの建物サイエンスセンサーと一緒に検証されており、光強度と占有周波数21の信頼性の高い測定を提供するように見えます。さらに、ロガーのこれらのモデルは、照明用途22、23、24で正確に、組み込み環境研究に有用である示されている。

プロトコル

この研究は、ワルシャワのSWPS社会科学人文科学大学の倫理委員会によって承認されました(番号46/2016)。

1. ロガー展開のための実験サイトの選択

  1. 光源に近接した場所にロガーを取り付け(十分な光の変化検出のため)、部屋の占有状況(適切な移動検出のため)に関するデータを収集できる屋内実験場を選択します。個々の参加者(一度に1人)。
  2. 部屋とその指定ユーザー(男性、女性または共社)の使用目的を確立します。
    注:実験サイトの例は、このタイプの部屋が頻繁に、そのユーザーが個別に訪問しているという事実のために、公共のシングルストールトイレである可能性があります。さらに、ほとんどの場合、その指定に基づいて、部屋が男性または女性によって訪問されているかどうかを指定することが可能です。
  3. 選択したサイトにアクセスし、そのライトスイッチと一緒に機能する光源の種類/数をメモします。複数の光源が 1 つまたは複数のライト スイッチによって制御されているかどうかを確認します。
  4. 光源の横にロガーを取り付ける可能性を確認します。ロガーの取り付け場所が、室内ユーザーの体熱のみが記録されるように、あらゆる種類の加熱源(ヒーター、窓、ミラーなど)に近接していないことを確認します。
  5. ロガーのインストールと実験の実行に必要な書面によるアクセス許可をサイト所有者から取得します。実験の詳細、ロガーの種類、およびアプリケーションを書面でサイト所有者に提供します。

2. 展開前のロガー構成

  1. データ ロガーからデータを起動、読み取り、およびプロットするために Windows/Mac プラットフォームで使用できる専用ソフトウェア (「資料の表」を参照) をダウンロードしてインストールします。
    注: さらに、基本的なシステム要件とソフトウェアマニュアルの詳細な説明は、製造元の Web サイトで参照してください (資料の表を参照)。
  2. USB ケーブルを介してロガーをコンピュータに接続します (USB インターフェイス ケーブルの大きな端をコンピュータの USB ポートに差し込み、USB インターフェイス ケーブルの小さな端をデバイスのポートに接続します)。
  3. ソフトウェアを起動します。
  4. ロガーのセットアップウィンドウを開くツールバーの起動アイコンをクリックします(またはデバイスメニューから[コマンドを起動]を選択します)。
    注 : ロガーがコンピュータに接続されていない場合、このオプションは使用できません。[起動ロガー ]ウィンドウは、1) 選択したロガーのモデル、シリアル番号、展開番号、および現在のバッテリ レベルを表示するロガー情報の 3 つのセクションに分かれています。2)ロガーのために利用可能なセンサーのリスト。および 3) 展開構成。このインターフェイスから、センサーの構成、データ表示フィルタの構成、開始/停止ロギング、LCD画面の表示など、展開前にロガーを設定する特定の機能を設定できます。
  5. 読み取り時およびロガーによって記録されたデータの保存時にデフォルトのファイル名として使用される起動の名前を入力します。
  6. センサーを選択します。ドロップダウンリストから[状態をログに記録]に測定値を設定し、ドロップダウン リストから状態の説明をオフ/オフに選択します。
  7. 占有センサーを選択します。ドロップダウン リストから[ログ状態]に測定値を設定し、ドロップダウン リストから [未使用/占有状態] の状態の説明を選択します。
    注: 稼働率チャネルと光センサー チャネルは、状態の変化またはランタイムをログに記録するように構成できます。状態変更の設定では、ロガーの作業はイベントに依存します。状態の変更を 1 秒ごとにチェックしている間、ロガーは、状態の変更が発生したときに、タイムスタンプ付きの値 (イベントの持続時間、日付と時刻) のみを記録します。一方、ランタイム構成設定では、ロガーはセンサーの状態を 1 秒に 1 回チェックして記録します。
  8. [フィルター ] ボタンをクリックして、追加の値 (最大値、最小値、平均値、合計など) の自動計算を有効にします。
    注: ステップ 2.8 はオプションであり、ロガーの読み出し中に各系列のデータをフィルタリングするのに役立ちます。
    1. 選択したセンサーの種類を選択します。フィルタの種類と使用する間隔を選択します。
    2. 名前を編集し、[新しい系列の作成] をクリックします。[完了]をクリックします。
  9. [詳細設定] ボタンをクリックして、センサーのプロパティにアクセスします。
    1. センサーを選択します。[キャリブレーションの感度を最大に設定]を選択し、[保存]ボタンをクリックします。
      メモ:デフォルトでは、上部パネルにあるコントロールボタンを使用して、ロガーを配置する場所でライトセンサーを自動キャリブレーションできます。キャリブレーションボタンを押すだけで、展開現場では、ロガーのLCD画面に監視対象のライトの信号強度が表示されます(実験サイトの光レベルが展開前に不明な場合は、このオプションを使用します)。センサーの感度は、展開の場所の光レベルが事前にわかっている場合は、「最大/最小感度に設定」オプションを使用して調整することもできます。これらの形式のキャリブレーションにより、ONとOFFの状態間の光の変化の正確な読み出しが保証されます。
    2. 占有センサーを選択します。プリセットのタイムアウト値(10秒、30秒、1分、2分、5分)を選択するか、[カスタム]を選択し、必要に応じて分と秒で値を入力します。[保存] ボタンをクリックします。
      注: タイムアウト値は、センサーが占有されていない領域を考慮するために必要な非アクティブ期間を指定します。既定では、この属性は 1 分に設定されています。
  10. 実験計画に応じて、ロガーを起動するタイミングを選択します: 1) 直ちに;2) 間隔で (実行時にログ記録時に使用可能)。3) 指定された日付/時刻に;または4)を手動で開始ボタンを使用して選択します。
  11. ロガーがログ記録を停止するタイミングを選択します: 1) メモリがいっぱいになったとき。2)指定された日付/時刻に停止します。3) 手動で停止するか、4) 停止しない - 最新のデータが最も古い上書きされます。
  12. 構成が完了したら、[開始] ボタンをクリックします。ロガーをコンピュータから取り外します。

3. フィールド設定でのロガーの展開

  1. ロガーがデータの記録を開始する前に、実験サイトにアクセスします。
  2. 周囲光(窓または鏡の反射から来る)を除外し、最も正確な測定値を確保するために、ロガーの背面に接続して、ロガーに追加の光ファイバーライトパイプ(材料テーブルを参照)を装備します。
    メモ:ライトパイプの長さは30.48cmで、手の届きにくいエリアにアクセスできるように曲げることができ、任意の部屋のユーザーの視界からロガーを隠すのにも役立ちます。
  3. 指定された光源の横にライトパイプを取り付け、磁気表面に取り付けることができるロガーの背面に4つの内蔵磁石を取り付けます。2)壁や他の平らな表面にそれをマウントするためにロガーの背面に取り付けることができる接着剤ストリップ。3)表面にロガーを貼り付けるために任意の両面テープ。または4)曲面にそれをマウントするためにロガーの両側の取り付けループを介して使用することができるフックアンドループストラップ。
    メモ:取り付け方法の選択は、ロガーを取り付けるサーフェスのタイプによって異なります。
  4. データ ログ セットまたは計画時に実験サイトを終了します。
  5. 記録が終わったら、実験サイトに再びアクセスし、データ読み出しのためにロガーを取り外します。

4. データの読み出し

  1. USBケーブルを介してロガーをコンピュータに接続し、データロガー専用の分析ソフトウェアパッケージを起動します(材料表を参照)。
  2. コントロールパネルから[読み出しデバイス]ボタンをクリックするか、デバイスメニューから[読み出し]を選択すると、ロガーは収集したデータをアンロードできます。
  3. 場所とファイル名を選択するか、既定の場所と名前をそのまま使用してデータを保存します。[保存]をクリックし、グラフに表示するセンサーやイベントを選択して、[プロット] をクリックします。
  4. テーブルデータとプロットに表示する系列を選択します。[すべて] または [なし] ボタンをクリックしてすべての系列を選択または選択解除するか、チェック ボックスをオンまたはオフにして個々の系列を選択または選択解除します。
    注: テーブル データは、配置前に設定された追加のフィルタを使用して数値で表示されます。各列は、収集されたデータの種類に対応します。たとえば、「light」というラベルの付いた列はライトスイッチングの発生を示し、「占有率」というラベルの付いた列は、ロガーが配置されたフィールドでの移動の有無に関する情報を表示します。各列では、状態の変化が二分的に表示されます (数値 "0" は、「ライト」列のオフの光状態と「占有」列の動きの欠如を表します)。
  5. コントロール パネルから [テーブル データのエクスポート] を選択します。エクスポート先のフォルダを選択します。
    注: データの読み出しを実行し、テキスト、コンマ区切り値、またはスプレッドシート ファイルにエクスポートできます。データプロットなどの他のオプションも使用できます。しかし、ほとんどの研究者がエクスポートされたデータに取り組み、統計パッケージを使用しているため、最も基本的なデータの読み出しを提示することにしました。詳細については、ロガーマニュアル19を参照してください。

結果

人間の観察と比較したロガーの信頼性試験
人間の観察と比較してロガーの信頼性をテストするために、大学キャンパス内のシングルストール男性トイレで4時間のフィールドテストを行いました。2人の男性オブザーバーがトイレの外(玄関から約5m離れた場所)を待ち、入居率/時間とライト切り替え(終了時にオンまたはオフのままにしたライト)の観点から訪問者の行動を独立し?...

ディスカッション

複数のサイトを同時に使用する場合(ロガー展開用)、参加者から異なる動作パターンが発生する可能性を排除するために、各サイトが同一のアーキテクチャ レイアウトを持っていることを確認する必要があります(つまり、稼働時間とライトスイッチングの可能性に起因する)。適切なサイトには、乗員に見える1つの対応するライトスイッチのみを備えた1つ以上の光源が装備されている必要が...

開示事項

著者たちは何も開示する必要はない。

謝辞

なし。

資料

NameCompanyCatalog NumberComments
HOBO Occupancy/Light (5m Range) Data LoggerONSETUX90-005As advertised by Onset - The HOBO UX90-005 Room Occupancy/Light Data Logger is available in a standard 128 KB memory model (UX90-005) capable of 84,650 measurements and an expanded 512KB memory version (UX90-005M) capable of over 346,795 measurements. For details and other products visit: https://www.onsetcomp.com/products/data-loggers/ux90-005
HOBO Light PipeONSETUX90-LIGHT-PIPE-1An optional fiber optic attachment or light pipe that eliminates effects of ambient light to ensure the most accurate readings. For details visit: https://www.onsetcomp.com/support/manuals/17522-using-ux90-light-pipe-1
HOBOwareONSET-Setup, graphing and analysis software for Windows and Mac. There are two versions of HOBOware: HOBOware (available for free) and HOBOware Pro (paid version which allows for additional analysis with different loggers). Each of them are dedicated to HOBO loggers. For details visit: https://www.onsetcomp.com/products/software/hoboware

参考文献

  1. Steg, L., Vlek, C. Encouraging pro-environmental behaviour: An integrative review and research agenda. Journal of Environmental Psychology. 29 (3), 309-317 (2009).
  2. Doliński, D. Is psychology still a science of behaviour. Social Psychological Bulletin. 13, 25025 (2018).
  3. Grzyb, T. Why can't we just ask? The influence of research methods on results. The case of the "bystander effect". Polish Psychological Bulletin. 47 (2), 233-235 (2016).
  4. Kormos, C., Gifford, R. The validity of self-report measures of proenvironmental behavior: A meta-analytic review. Journal of Environmental Psychology. 40, 359-371 (2014).
  5. Lange, F., Steinke, A., Dewitte, S. The Pro-Environmental Behavior Task: A laboratory measure of actual pro-environmental behavior. Journal of Environmental Psychology. 56, 46-54 (2018).
  6. Lucidi, A., Thevenot, C. Do not count on me to imagine how I act: behavior contradicts questionnaire responses in the assessment of finger counting habits. Behavior research methods. 46 (4), 1079-1087 (2014).
  7. Abrahamse, W., Schultz, P. W., Steg, L., Gifford, R. Research Designs for Environmental Issues. Research Methods for Environmental Psychology. , 53-71 (2016).
  8. Blasko, D. G., Kazmerski, V. A., Corty, E. W., Kallgren, C. A. Courseware for observational research (COR): A new approach to teaching naturalistic observation. Behavior Research Methods, Instruments, & Computers. 30 (2), 217-222 (1998).
  9. Sussman, R., Gifford, R. Observational Methods. Research Methods for Environmental Psychology. , 9-28 (2016).
  10. Jansen, R. G., Wiertz, L. F., Meyer, E. S., Noldus, L. P. Reliability analysis of observational data: Problems, solutions, and software implementation. Behavior Research Methods, Instruments, & Computers. 35 (3), 391-399 (2003).
  11. Maclin, O. H., Maclin, M. K. Coding observational data: A software solution. Behavior Research Methods. 37 (2), 224-231 (2005).
  12. Bergquist, M., Nilsson, A. I saw the sign: promoting energy conservation via normative prompts. Journal of Environmental Psychology. 46, 23-31 (2016).
  13. Dwyer, P. C., Maki, A., Rothman, A. J. Promoting energy conservation behavior in public settings: The influence of social norms and personal responsibility. Journal of Environmental Psychology. 41, 30-34 (2015).
  14. Oceja, L., Berenguer, J. Putting text in context: The conflict between pro-ecological messages and anti-ecological descriptive norms. The Spanish Journal of Psychology. 12 (2), 657-666 (2009).
  15. Sussman, R., Gifford, R. Please turn off the lights: The effectiveness of visual prompts. Applied ergonomics. 43 (3), 596-603 (2012).
  16. Gifford, R., Nilsson, A. Personal and social factors that influence pro-environmental concern and behaviour: A review. International Journal of Psychology. 49 (3), 141-157 (2014).
  17. Earp, B. D., Trafimow, D. Replication, falsification, and the crisis of confidence in social psychology. Frontiers in Psychology. 6, 1-11 (2015).
  18. van Aert, R. C., van Assen, M. A. Examining reproducibility in psychology: A hybrid method for combining a statistically significant original study and a replication. Behavior research methods. 50 (4), 1515-1539 (2018).
  19. Mehl, M. R., et al. The Electronically Activated Recorder (EAR): A device for sampling naturalistic daily activities and conversations. Behavior Research Methods, Instruments, & Computers. 33 (4), 517-523 (2001).
  20. Ali, A. S., Zanzinger, Z., Debose, D., Stephens, B. Open Source Building Science Sensors (OSBSS): A low-cost Arduino-based platform for long-term indoor environmental data collection. Building and Environment. 100, 114-126 (2016).
  21. Popoola, O., Munda, J., Mpanda, A. Comparative analysis and assessment of ANFIS-based domestic lighting profile modelling. Energy and Buildings. 107, 294-306 (2015).
  22. Tetlow, R. M., Beaman, C. P., Elmualim, A. A., Couling, K. Simple prompts reduce inadvertent energy consumption from lighting in office buildings. Building and Environment. 81, 234-242 (2014).
  23. van Someren, K., Beaman, P., Shao, L. Calculating the lighting performance gap in higher education classrooms. International Journal of Low-Carbon Technologies. 13 (1), 15-22 (2017).
  24. Landis, J. R., Koch, G. G. The measurement of observer agreement for categorical data. Biometrics. 33 (1), 159-174 (1977).
  25. McGraw, K. O., Wong, S. P. Forming inferences about some intraclass correlation coefficients. Psychological methods. 1 (1), 30 (1996).
  26. Hallgren, K. A. Computing inter-rater reliability for observational data: an overview and tutorial. Tutorials in quantitative methods for psychology. 8 (1), 23 (2012).
  27. Cialdini, R. B., Kallgren, C. A., Reno, R. R. A focus theory of normative conduct: A theoretical refinement and reevaluation of the role of norms in human behavior. Advances in experimental social psychology. 24, 201-234 (1991).

転載および許可

このJoVE論文のテキスト又は図を再利用するための許可を申請します

許可を申請

さらに記事を探す

155

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved