Method Article
ここに示されているDownToTen(DTT)ポータブル放出測定システムは、サブ23nm粒子の実際の自動車排出量を評価します。
欧州粒子数(PN)放出基準の現在の粒子サイズ閾値は23nmである。将来の燃焼エンジンの車両技術は、サブ23 nm粒子を大量に放出する可能性があるため、このしきい値が変化する可能性があります。Horizon 2020の資金提供プロジェクトDownToTen(DTT)は、現在規制されていないサイズ範囲で粒子放出を特徴付けるサンプリングと測定方法を開発しました。PN測定システムは、さまざまなPN測定およびサンプリングアプローチをテストする文献および実験室実験の広範なレビューに基づいて開発されました。開発された測定システムは、一次粒子、遅延一次粒子、および直径数ナノメートルから始まる二次エアロゾルの評価を可能にする高い粒子浸透と汎用性を特徴としています。本稿では、このポータブルエミッション測定システム(PEMS)を実際の駆動放出(RDE)測定用に設置および運用し、現在の立法限界である23nm以下の粒子数排出量を評価する方法について説明します。
粒子測定プログラム(PMP)は、「現在の立法測定手順を補完または置き換える高度な粒子還元技術を搭載した車両を評価するためのタイプ承認試験プロトコルの開発」のために英国政府によって設立されました。PMPは、炭素質粒子≥23nmを対象とした世界初の粒子数ベースの排出規制です。最近の測定は、より小さな粒子を含める必要があるかもしれないことを示している。
ディーゼルすすの負の健康への影響は2をよく理解されており、ディーゼル粒子フィルター(DDF)の必須使用を通じてディーゼル排気からの炭素粒子の排除が健康上の理由で不可欠であったという根拠に基づいて「予防原則」が呼び出された。しかし、欧州の法律では、制限値が排出制御技術の採用を強制しなければならないため、適切な測定方法がなければこれを達成することはできません。ヨーロッパ全土で強力な政治的支援を受けて、英国政府は粒子測定を改善するためにPMPの概念を主導しました。PMPは、国連欧州経済委員会(UN-ECE)3の後援の下、世界中の他3の人々の専門知識を含んでいた。2001年には2つの粒子研究プロジェクトが完成しました。そのうちの1つ(粒子研究4)は、英国政府環境・運輸・地域省(DETR)が、自動車製造業者協会(SMMT)および欧州環境・安全衛生機構(CONCAWE)と提携して実施しました。もう一つ(Pっこ5)は、欧州連合(EU)の第5の枠組みによって資金提供され、14の異なるヨーロッパのパートナーによって行われました。両プロジェクトの結果は、粒子数ベースの手順が有望であるが、再現可能で再現可能な測定のための課題が残っていることを示した。
2007年にPMPライトデューティ室間相関演習の最終報告書6が発表され、主に定義された粒子サイズ範囲と粒子の揮発性に基づく規制目的のための数カウントベースの方法の実現可能性を実証するフィルターベースの質量測定方法のいくつかの改善を含む。どちらの方法も、粒子状物質質量と袋詰め希釈ガス放出測定のために開発された既存の定定量型サンプラー(CVS)希釈トンネルアプローチからのサンプリングに基づいて実施された。
数カウントベースの方法の中で、〜20nmのより低い粒径制限が選択された。このプロジェクトの主な目的は、このサイズ以上の粒子が法律によって制御されることを保証することであった。エンジン排気中の一次粒子サイズは、<20 nm77、8、98,9であることが知られています。実用的な理由から、23nmで50%の計数効率(d50)を有する粒子カウンターが選択され、このサイズは許容される低いサイズの閾値となった。希釈、気温、湿度、比10などの特性に対する感度が高いため、揮発性粒度分布と積分数測定は、1台の車両を備えた1つのCVS搭載施設で繰り返し可能であることが認識されましたが、施設から施設までは大幅に低いものでした。したがって、厳密な規制のためには、測定アプローチでサイズと揮発性に関する制御粒子境界条件を効果的に定義して、純粋に不揮発性粒子に焦点を当てる必要がありました。欧州のディーゼル燃料は、350°Cを超える温度でわずか数%しか沸騰しないようなバックエンドのボラティリティを有し、PMP内の初期の作業は、この温度での短い滞留時間がテトラコンタンの完全な蒸発に適していることを示した。その結果、350 °Cの温度は、規制>23 nmの粒子揮発性の事実上の基準点となっています。
PMP測定システム仕様は、サンプリング、サンプルコンディショニング、および測定用のコンポーネントを含み、 表1に要約する。
段階 | Id | 目的 |
0 | サンプルソース | サンプルの起源 |
1 | パーティクルトランスポート | 原点から測定システムまでのサンプルを実施 |
2 | 揮発性粒子除去 | 揮発性を排除し、測定する不揮発性粒子を定義する |
3 | パーティクル数カウンタ | 不揮発性粒子を列挙し、下限サイズを定義する |
表1:PMP測定システムの要素
欧州のPMP PNアプローチは、軽自動車ディーゼル(2011年9月、EURO 5b)とGDI車(2014年9月、ユーロ6)、およびディーゼルおよびガスの大型エンジン(2013年2月、EURO VI)に適用されています。
最近の測定では、いくつかの軽量車両、特にスパーク点火技術は、粒子のかなりのレベルを放出することができることを示しました <23 nm12,,13,,14.これにより、欧州委員会は、現在の>23 nm規制の代替として、または追加的に迅速に実施できる新しいまたは拡張された方法を開発するための研究プロジェクトに資金を提供しました。
そのようなプロジェクトの1つであるDownToTen(DTT)は、PMPの一般的なアプローチを維持し、測定範囲をd50≤10 nmまで拡張することを目指しています。この目的のために、DTT測定システムの構成は 、表1に記載されているのと同じ基本的な要素を含むように設計されましたが、調整と測定のステップは最適化され、<23 nm粒子の効率的な輸送と検出が可能になりました。DTTシステムは、当初は実験室での使用のために開発されましたが、ポータブル排出測定システム(PEMS)として動作するように変更されました。DTT PN-PEMSシステムでは、部品は軽量化と消費電力を削減し、元の設計から大幅に逸脱することなく物理的な堅牢性を高めるために最適化されました。モバイルアプリケーションでは、軽量および頑丈なPEMSテストで遭遇する可能性が高い、より厳しく不安定な温度、圧力、振動環境に対してシステムが耐性を持つ必要があります。システムの入口における圧力変動の影響をモデル化し、実験15.振動に対する抵抗は、専用の試験ベッド16を用いて評価した。一般的なRDEドライブ中に発生する振動と加速度は、使用される凝縮粒子カウンタの測定結果を損なうものではありません。DTTシステムはまた、低温での使用のために設計されており、揮発性除去機能が非アクティブであり、老化チャンバーを供給し、二次有機エアロゾル形成17を研究する。
両方のシステムがシーケンスを含むという点でPMPシステムの要素を密接に平行に粒子の調節ボラティリティ境界を定義するDTT測定システムの熱調節要素:
DTT システムと PMP システムの主な違いは、DTT システム コンポーネントが次の目的で選択される点です。
本論文の目的は、使用中の道路車両から10nm≥の不揮発性粒子を測定するためのDTT PN-PEMSシステムの使用を提示することである。これには、測定システムとその主要コンポーネントの紹介、ラボベースのキャリブレーション測定の実行、モバイルアプリケーション用のデバイスの設置、実際の駆動放出測定の実施、収集された測定データの処理が含まれます。
計測
DTT PN-PEMSは、数ナノメートルまで高い粒子浸透、堅牢な粒子数希釈、揮発性粒子の除去、人工粒子形成の防止を提供するように設計されました。システムの構成要素は、希釈およびエアロゾルコンディショニングのための様々な技術を比較した実験室実験の結果に基づいて選択された。このセクションでは、システムの概要、その作業原理、および使用されるコンポーネントについて説明します。 図1 は、システムの概略図を示しています。 図2 は、システムの写真を示しています。DTTシステムは高さ60cmで、50cm x 50cmのフットプリントを持っています。システムの重量はおよそ20のkgである。必要な周辺要素(電池およびガスボトル)を含む総重量は約80kgである。システムの主要な要素は、2つの希釈段階(すなわち、第1の熱、第2の寒さ)、触媒ストリッパー、および少なくとも1つの凝縮粒子カウンター(CPC)である。
図1:DTT粒子数ポータブルエミッション測定システムの模式図。この図の大きなバージョンを表示するには、ここをクリックしてください。
図2:DTTサンプリングシステムのトップビュー図この図の大きなバージョンを表示するには、ここをクリックしてください。
2つの希釈段階は、凝縮粒子カウンター(<104 #/cm3)によって測定可能なレベルに粒子数濃度を減少させる。カスタムメイドの多孔質チューブ希釈剤は、両方の希釈段階に使用されます。この技術は、粒子損失が少ない18,19,19のために選ばれた。希釈空気の放射状の進入は、粒子を壁から遠ざけ、粒子の損失を減少させます。さらに、これらの希薄剤は非常に小さく、400°Cの温度に耐えることができる。 使用される多孔質材料は焼結性ハスタロイXチューブ(GKNフィルターメタルズGmbH、ラデボルムヴァルト、ドイツ)である。多孔質チューブ内の静的混合要素は、希釈剤の直接下流に十分に混合されたエアロゾルを提供します。これにより、希釈機の直接下流にエアロゾルフローを分割することにより、さらなるコンディショニングまたは測定のために希釈エアロゾルの代表的なサンプルを取ることができ、コンパクトなサンプリングシステムを可能にします。一次希釈段階は通常350°Cに加熱され、第2段階は周囲温度で動作します。システムの希釈係数は約80です。正確な値は、流入流量とマスフロー管理に依存します: サンプリングシステムの流量は、2つのマスフローコントローラと2つのマスフローメータのシステムによって管理されます。マスフローコントローラは希釈空気流量を制御します。質量流量計は、希釈段階1および2の下流に抽出された流量を監視します。抽出されたフローと供給されるフローの違いを変更することができます。つまり、1つの希釈段階で加えたり減算したりするネットフローを定義することができる。サンプル流量は、他sampleのすべての流量の合計として定義されます: 1) 測定器によって描画された流量(Qinst);2)希釈空気流量(Qディル、i);3)過剰流量Q Qex,i.サンプルフローの計算では、システムから抽出されたフローの寄与はプラスであり、システムに供給されるフローの寄与は負です。
DRの全 希釈比は 、次の方法で計算されます。
触媒ストリッパー(CS)は希釈段階1と2の間に位置し、1分あたり1リットルの流量(L/分)で350°Cで動作します。触媒ストリッパーは、有機化合物および硫黄貯蔵の酸化を提供する。これらの物質の除去は固体粒子の分画の分離を保障する。揮発性および半揮発性粒子の望ましくない形成およびサブカットサイズ粒子の成長が防止される。触媒ストリッパーとしては市販されている(AVL GmbH)。CSの揮発性粒子除去効率は、多分散エメリー油粒子>50nmおよび>1 mg/m 3(3.5〜5.5mg/m3)で検証され、効率は>99%(実価99.9%)を示した。3RDE規則20で定義されているとおり。これは、現在のPMPプロトコルで規定されているテトラコンタン試験よりも厳格な試験である。
1つ以上の凝縮粒子カウンターは、第2希釈段階の下流の粒子数濃度を測定するために使用される。23 nmのd50 を有するCPCは23nmより大きい固体粒子の現在調節された放出の測定を可能にする。さらに、d50 カットポイントが低い1つ以上のCPC(例えば、10nm、4 nm)で粒子数濃度を測定することで、現在規制されていない固体粒子分率<23nmを、適用されたCPCのd50 カットサイズまで評価することができます。
希釈空気供給ライン、一次多孔管希釈器、および触媒ストリッパーは、k型熱電対(TC)を含む独立した加熱素子を有する。独立して異なるセクションを加熱すると、システム内の温度分布を制御します。
発熱体の熱電対に加えて、希釈ステージ1と2の下流に2つの熱電対が配置される。これら2つの熱電対は、エアロゾル温度を直接測定します。
2つの絶対圧力センサ(NXP MPX5100AP)を使用して、サンプリングシステムの入口と出口の圧力を監視します。
モバイル測定では、クレイトンパワーLPS 1500バッテリーパックが使用されます。10 Lの合成空気のびんは移動式の適用の間に希薄空気のシステムを供給する。バッテリとガスボトルのサイズは、システムが100分間独立して動作できるように選択されます。
システムは、LabVIEW仮想計測器を実行しているNI myRIOを介して制御されます。仮想器械は流量およびヒーター温度の制御を可能にする。制御された変数とは別に、エアロゾルの温度、圧力、加速度(myRIOに内蔵されたセンサーを介して)を監視し、記録することができます。myRIOアクセサリーGPSモジュールは、位置データのロギングを可能にします。 図 3 と 図 4 は、DTT システムの制御に使用される仮想計測器のユーザー インターフェイスを示しています。
図3:DTT仮想計測器希釈段階パラメータの概要この図の大きなバージョンを表示するには、ここをクリックしてください。
図4:DTT仮想計器ヒーターコントロールパネルこの図の大きなバージョンを表示するには、ここをクリックしてください。
どのようなサンプリング手順でも、パーティクルの損失が発生します。これらの損失を考慮するために、DTTサンプリングシステムを介した粒子サイズ依存性粒子透過を決定するために、実験室での測定が行われます。これらの測定では、単分散エアロゾルの粒子濃度は、2つの凝縮粒子カウンターを用いてサンプリングシステムの上流および下流で測定される。図5は、キャリブレーション測定の実験用セットアップを示しています。この設定では、Jing ミニキャストがパーティクル ソース21、22,22として使用されます。マスフローコントローラ(MFC)は、バーナへのガスの流れを制御するために使用されます。希釈ブリッジにより、粒子数濃度の調整が可能になります。希釈ブリッジは、針弁に平行な高効率微粒子空気(HEPA)フィルタです。針弁の位置を調整すると、HEPAフィルターを通過するエアロゾルの割合と、針弁を通過するエアロゾルの割合との比率を変更することで希釈比が変化します。濾過および濾過されていないエアロゾルは、希釈されたエアロゾルを形成するためにTピースと再結合される。触媒ストリッパーは、燃焼プロセスの副産物として生成されるおそらく豊富な揮発性化合物を除去するために使用されます。TSI 3085の差動度計(ナノDMA)と共にTSI 3082静電分類器は粒子のサイズ選択のために使用される。DTTサンプリングシステムの上流および下流の粒子数濃度を測定するために2つのTSI CPC 3775(d50 = 4 nm)が使用されます。カウンターのカットポイント d50 = 4 nm は、10 nm 以下の低い粒子サイズでの貫通判定を可能にします。
図5:DTTサンプリングシステムのキャリブレーションに使用する実験用セットアップの模式図。この図の大きなバージョンを表示するには、ここをクリックしてください。
1. キャリブレーション手順
ガス | 流量 |
プロパン | 20 mL/分 |
クエンチガス(N2) | 2 L/分 |
希釈空気 | 5 L/分 |
酸化空気 | 0.5 L/分 |
混合ガス(N2) | 0 L/分 |
表2:キャリブレーション測定に推奨されるミニキャスト流量
2. 実際の走行排出量測定の設置と準備
図 6: インストールされている EFM の画像。この図の大きなバージョンを表示するには、ここをクリックしてください。
図7:車内からDTT PEMSを示す。この図の大きなバージョンを表示するには、ここをクリックしてください。
図 8: 車体のトランク内の DTT PEMSこの図の大きなバージョンを表示するには、ここをクリックしてください。
図9:市販のPN-PEMS(AVL MOVE)およびDTT PEMSを搭載した車両。この図の大きなバージョンを表示するには、ここをクリックしてください。
3. 測定操作
4. データ分析
図10:測定された排気質量流量と比較した#/cm33における測定粒子数PNの時間アライメントの例この図の大きなバージョンを表示するには、ここをクリックしてください。
キャリブレーションデータ(粒子浸透):
図11 は、粒子移動径の関数としてのDTT系の相対的な粒子浸透の例示的プロットを示す。対応するデータは、指示セクション1に記載されているように測定され、評価されています。このプロットは、同じ移動直径の2つの測定点間の偏差が5%未満であったことを示しています。偏差が10%を超える場合は、実験の設定が不安定であることを示します。この場合、較正はウォームアップ安定化時間を増加して繰り返す必要がありました。ウォームアップ時間(通常は30分)と安定化時間(通常は30s)の両方が1.5倍増加しました。
DTT系を通過する粒子は、拡散と熱泳動のために失われました。熱泳動損失は、サンプリングシステムの壁に向かって粒子を描く温度勾配によって引き起こされた。これは、粒子サイズ独立した効果29です。対照的に、拡散は粒子サイズに大きく依存する。濃度勾配が原因で、粒子が失われた壁に向かって純粒子フラックスが発生した。粒子径が低いとともに拡散性が上昇したことで、パーティクルの主な損失メカニズム≤10nmとなった。 図11 の線は、熱泳動、拡散、および損失の合計を示し、それぞれの粒子サイズの依存性を示しています。拡散損失については、この関数を使用して、粒子サイズの近似依存性を示します。
浸透 性P は、適合パラメータ a と拡散係数 Dに依存します。
拡散係数は、ボルツマン定数k、絶対温度T、粘度η、粒子径dp、およびカニンガムスリップ補正d係数Cccに依存する。
図11に示すデータは、以下の平均粒子浸透効率P平均を示した。
浸透効率が50%に相当する粒子径をd50と呼ぶ。d50 は、システムの浸透遮断特性を説明する。DTTシステムの場合、d50 は11 nmであった。d50 は 図 11に示されています。
図11:粒子移動径の関数としての粒子浸透。
青色でマークされた点は測定結果です。オレンジと緑の破線は、それぞれ熱泳動と拡散に関連する損失を示しています。赤い線は、拡散損失と熱泳動損失の合計として損失の合計を表します。ドットダッシュ紫線は、キャリブレーション測定指示部1で計算された平均粒子貫通法を示す。 この図の大きなバージョンを表示するには、ここをクリックしてください。
固体粒子数:
図12は、RDE測定ドライブの最初の10分間の時間経過に対する粒子数の放出率を示しています。10 nmおよび23 nm CPCを用いたDTT PEMSからのデータは、市販の23nmカットポイントシステムからのデータと共に示される。粒子放出速度は、データ分析指示部4で上述した排気流量を各粒子濃度に乗じて算出した。基準計器(AVL MOVE)は、粒子数濃度測定用の拡散充電器に依存していました。異なるセンサー原理にもかかわらず、DTT PEMSで測定されたデータは、市販のPEMSで測定されたデータと全体的に非常に良好に一致していました。粒子測定装置が一時的にゼロ粒子濃度を報告し、ゼロを対数プロットで表示できないため、3つの信号すべてで急激な下向きのスパイクが発生しました。10 nm CPCで測定した粒子放出は、図12に示す期間の大半について23nm CPCで測定された排出量に非常に近かった。しかし、10~25sの間の最初に、有意な<23nm粒子放出の発生があった。DTT 10 nm信号は、DTTシステムとAVL MOVEの23nm信号よりも有意に高かった。この場合、放出されるパーティクルの総数の50%が10 nmから23 nmの間であった。非熱平衡におけるコールドスタート動的プロセスは、粒子サイズ分布が熱い車両30からの放出と異なる原因となる可能性がある。これらの複雑なプロセスの議論は、この作業の範囲を超えています。このトピックの詳細については、文献31、32、,33を参照してください。
図12:図の上部は、RDE測定ドライブの最初の10分間の時間経過に対する粒子数の放出率を示しています。
10 nmおよび23 nm CPCを用いたDTT PEMSと市販の23nmカットポイントシステム(AVL MOVE)を用いて測定したデータが基準として使用されている。図の下部は車両の速度を示しています。 この図の大きなバージョンを表示するには、ここをクリックしてください。
この作品は、DTTサンプリングシステムとその応用をポータブルエミッション測定システムとして提供します。このシステムは、EU Horizon 2020 プロジェクト DTT 内で設計および構築され、現在の立法粒子径制限である 23 nm 未満のパーティクル数放出測定を可能にしました。システムの多様性は調節された固体粒子番号の放出の評価および総粒子放出および二次エアロゾルの研究を可能にする。測定結果を正確に解釈するには、DTTシステムでキャリブレーション手順が必要です。これは、異なる粒子サイズに対する相対的な粒子浸透率を評価し、粒子損失を占める補正係数を算出することができるようにする。サンプリングシステム自体と実験用の残りの部分が熱平衡に達し、正確なキャリブレーション測定結果を得るために十分なウォームアップ時間を提供することが重要です。
DTTシステムの適用は、23nm(現在の調節)および10nm(実験)の低い粒子サイズカットオフを有する固体粒子数放出の測定に関する記載されている。車両の粒子数排出量を評価できるようにするには、粒子数濃度と排気質量流量を決定する必要がある。DTTシステムは、粒子数濃度測定をカバーします。排気量の流量は、排気流量計(EFM)を用いて測定します。メーカーの指示に従ってEFMをインストールすることが重要です。排気流量の誤測定は、推定放出速度に直接影響を与えます。測定データを処理する際には、粒子濃度データと排気流量データの正確な時間アライメントを行うことが重要です。これは、排出速度が排気流量に粒子数濃度を掛けたものであるため、必要です。2つの信号が正しく整列しない場合、ドライブ全体の排出量が実際の排出量から大幅に逸脱する可能性があります。
DTTシステムは、商用デバイスではなく、多目的な研究ツールです。これは、現在の規制への準拠を検証する認証測定を行うのとは対照的に、規制されていない車両排出量を調査するために使用されます。高い多様性は増加したエネルギーおよび希薄空気消費の犠牲に来る。移動式測定にシステムを使用する場合、システムのエネルギーと空気の消費量をカバーするためにバッテリー(30キロ)とガスボトル(20キロ)のために車両に加えた重量を念頭に置く必要があります。DTTシステムでPN排出量を測定する際に車に加えた総重量は約80kgで、車両内で輸送される他の人に匹敵します。追加された重量は、特にドライブに多くの加速および/または丘が含まれている場合、わずかに増加する排出量につながる可能性があります。
DTT システムを使用して、規制されていない <23 nm パーティクル数の排気ガスを調べることができます。固体および総粒子数の放出の両方を測定することができる。さらに、二次エアロゾル形成の複雑な分野を研究するのに有用なツールとすることができる。システムのもう一つの可能な用途は、自動車用ブレーキ摩耗粒子の測定である。ブレーキイベント中に放出されるパーティクルのかなりの割合は、30 nm34より小さくすることができます。DTTシステムは、約11 nmの d50 で、これらの排出ガスの研究に適しています。非排気排出量は、交通関連のPM10 排出量35にほぼ等しく寄与することが知られていますが、非排気粒子排出量は依然として規制されていません。これは、粒子生成の複雑で再現可能なプロセスが原因であり、調節行動を設定することは非常に困難です。さらに、有機ブレーキ摩耗粒子の化学組成および関連毒性は、依然として広く知られていない35である。
DTTシステムは、排気と非排気の両方のトラフィック関連の粒子放出の理解を深めるのに役立つツールです。
著者らは開示するものは何もない。
この作業は、H2020プロジェクトDownToTenの枠組みの中で行われます。このプロジェクトは、助成金協定Nr. 724085の下で欧州連合のHorizon 2020研究およびイノベーションプログラムから資金を受け取りました。
Name | Company | Catalog Number | Comments |
2x Condensation Particle Counter 4 nm | TSI | 3775 | Particle counter with a cut point of 4 nm |
5x Mass Flow Controllers (MFC) | Vögtlin | Mass flow controllers for controlling the miniCast gas flows | |
AVL M.O.V.E. EFM Exhaust Flow Meter | AVL | Device for the measurement of the exhaust flow rate of vehicles | |
Catalytic Stripper | Custom made | Device for the removal of volatile compounds in an aerosol by oxidation | |
Compressed Air | Oxidation and dilution air supply for miniCast | ||
Condensation Particle Counter 10 nm | AVL | Particle counter with a cut point of 10 nm | |
Condensation Particle Counter 23 nm | TSI | 3790A | Particle counter with a cut point of 23 nm |
Differential Mobility Analyzer | TSI | 3085 | Part of the electrostatic classifier where the particle are separeted by mobility. |
Dilution Bridge | Custom made | Needle valve in parallel to HEPA filters. Used to adjust particle concentrations for calibration purposes | |
DownToTen Sampling System | Custom made | Custom made sampling system for the assessment of automotive sub-23 nm particle emissions | |
Electrostatic Classifier | TSI | 3082 | Device for the classifaction of arosol particles by electrical mobility diameter |
Hand held Mass Flow Meter (MFM) | Vögtlin | Device for measuring the inlet flow of measurement instruments | |
miniCast Soot Generator | Jing Ltd | Combastion aerosol standard, soot generator | |
Mobile Battery LPS 1500 | Clayton Power | Battery for power supply of the DTT measurement system | |
Nitrogen Gas Bottle | Nitrogen for Mixing gas and quench gas supply of miniCast | ||
Propane Gas Bottle | Fuel for miniCast | ||
Soft X-Ray Neutralizer | TSI | 3088 | Device for the establishmentof the equillibrium charge distribution of aerosol particles |
Synthetic Air Bottle 10 L | Gas Bottle for the dilution air supply |
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved