Dissolved Oxygen in Surface Water

概要

Source: Laboratories of Margaret Workman and Kimberly Frye - Depaul University

Dissolved oxygen (DO) measurements calculate the amount of gaseous oxygen dissolved in surface water, which is important to all oxygen-breathing life in river ecosystems, including fish species preferred for human consumption (e.g. bluegill and bass), as well as decomposer species critical to the recycling of biogeochemical materials in the system.

The oxygen dissolved in lakes, rivers, and oceans is crucial for the organisms and creatures living in it. As the amount of dissolved oxygen drops below normal levels in water bodies, the water quality is harmed and creatures begin to die. In a process called eutrophication, a body of water can become hypoxic and will no longer be able to support living organisms, essentially becoming a “dead zone.”

Eutrophication occurs when excess nutrients cause algae populations to grow rapidly in an algal bloom. The algal bloom forms dense mats at the surface of the water blocking out two essential inputs of oxygen for water: gas exchange from the atmosphere and photosynthesis in the water due to the lack of light below the mats. As dissolved oxygen levels decline below the surface, oxygen-breathing organisms die-off in large amounts, creating an increase in organic matter. The excess organic matter causes an increase in the oxygen-breathing decomposer populations in the benthic zone, which further depletes the remaining dissolved oxygen levels during the metabolic decomposition activity. Once the oxygen levels become this low, mobile oxygen-breathing species (e.g. fish) will move away, leaving no aerobic life in the water and creating a dead zone.

The Azide-Winkler titration method uses titration to determine the concentration of an unknown in a sample. Specifically, sodium thiosulfate is used to titrate iodine, which can be stoichiometrically related to the amount of dissolved oxygen in a sample.

手順

1. Sample Dissolved Oxygen Measurement

  1. At the water collection site, use a calibrated pipette to add 2 mL manganous sulfate to a clear 300-mL BOD bottle filled with the sample water. Be careful not to introduce oxygen into the sample by inserting the pipette tip under the sample surface and carefully dispensing manganous sulfate. This will avoid creating bubbles until the sample is “fixed” and prevents change to the dissolved oxygen concentration.
  2. Using the same technique, add 2 mL alkal

Log in or to access full content. Learn more about your institution’s access to JoVE content here

結果

A dissolved oxygen level of 6 mg/L is sufficient for most aquatic species. Dissolved oxygen levels below 4 mg/L are stressful to most aquatic animals. Dissolved oxygen levels below 2 mg/L will not support aerobic aquatic life (Figure 5).

The maximum amount of oxygen that can be dissolved in water varies by temperature (Table 1).

DO measurements in mg/L are converted to % saturation using water temperature and the conversion chart be

Log in or to access full content. Learn more about your institution’s access to JoVE content here

申請書と概要

Slow-moving rivers are particularly vulnerable to low DO levels, and in extreme cases, these DO levels can lead to hypoxic conditions, creating “dead zones” where aerobic life is no longer supported by a body of water (Figure 7). Once plants and animals die-off, the build-up of sediment that occurs can also raise the riverbed, allowing plants to colonize over the water and could lead to the loss of the river all together (Figure 8). Surface waters at higher altitudes are also

Log in or to access full content. Learn more about your institution’s access to JoVE content here

タグ
Dissolved OxygenSurface WaterAzide Winkler Titration MethodAerobic LifeWater EcosystemsGaseous OxygenWater QualityOrganismsSodium ThiosulfateIodine TitrationOxygen ConcentrationVideo DemonstrationEutrophicationExcess NutrientsAlgal BloomsHypoxia

スキップ先...

0:00

Overview

1:14

Principles of Measuring Dissolved Oxygen in Surface Water

3:27

Sample Collection and Fixing in the Field

4:42

Measuring Dissolved Oxygen in Surface Water Samples in the Laboratory

6:04

Results

7:01

Applications

9:07

Summary

このコレクションのビデオ:

article

Now Playing

Dissolved Oxygen in Surface Water

Environmental Science

55.5K 閲覧数

article

樹木: 二分のキーを使用するには、方法

Environmental Science

81.0K 閲覧数

article

点を中心とした樹木の調査: 四半期サンプリング

Environmental Science

49.2K 閲覧数

article

GIS を用いた都市林業を調査

Environmental Science

12.5K 閲覧数

article

プロトン交換膜燃料電池

Environmental Science

21.9K 閲覧数

article

バイオ燃料: セルロースからのエタノールの生産

Environmental Science

52.9K 閲覧数

article

組み換え食品の遺伝子検査

Environmental Science

89.3K 閲覧数

article

濁度と地表水の全固形物

Environmental Science

35.7K 閲覧数

article

水生生物の生態系の栄養素

Environmental Science

38.7K 閲覧数

article

対流圏オゾンを測定

Environmental Science

26.3K 閲覧数

article

紫外可視分光法を用いた自動車の排気ガスのないxの定量

Environmental Science

30.0K 閲覧数

article

原子吸光分光法による土壌の鉛の分析

Environmental Science

125.1K 閲覧数

article

炭素・窒素環境試料の分析

Environmental Science

29.3K 閲覧数

article

土壌養分分析: 窒素、リンおよびカリウム

Environmental Science

215.4K 閲覧数

article

土壌にミミズ個体数の解析

Environmental Science

16.4K 閲覧数

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved