JoVE Logo

サインイン

ピトースタティックチューブ:空気の流速を測定する装置

概要

出典:デビッド・グオ、工学・技術・航空学部(CETA)、南ニューハンプシャー大学(SNHU)、マンチェスター、ニューハンプシャー州

ピトースタティックチューブは、空気の流れの未知の速度を測定するために広く使用され、例えば、飛行機の対気速度を測定するために使用されます。ベルヌーイの原理では、対気速度は圧力の変動に直接関係しています。従って、ピトー静電気管は停滞圧力および静的圧力を感知する。それは圧力の読書を得るために圧力の変圧器に接続され、対速度の予測を可能にする。

この実験では、風洞を利用して特定の対気速度を生成し、ピトー静電気管予測と比較します。流れ方向に対するずさんによるピトー静電気管の感度も調べられる。この実験では、ピトー静的チューブを用いて気流速度を測定する方法を示します。目標は、得られた圧力測定値に基づいて気流速度を予測することです。

原則

ベルヌーイの原理は、流体の速度の増加は圧力の低下と同時に起こり、その逆も同様であると述べています。具体的には、流体の速度がゼロに減少した場合、流体の圧力は最大値まで増加します。これは、停滞圧力または総圧力と呼ばれます。ベルヌーイの方程式の1つの特別な形態は次のとおりです。

停滞圧力=静圧+動的圧力

ここで、停滞圧力、P oは、流速がゼロに減少した場合の圧力である、静圧、Psは、周囲の流体が所定の点に及ぼす圧力であり、動的圧力、Pdはラム圧とも呼ばれ、所定の点の流体密度、ε、および流速Vに直接関連します。 この方程式は、液体流れや低速気流(一般に100m/s未満)などの非圧縮性流れに適用されます。

上記の方程式から、圧力差と流体密度の観点から、流速Vを次のように表現できます。

18世紀には、フランスのエンジニアアンリ・ピトがピトー管[1]を発明し、19世紀半ばにフランスの科学者ヘンリー・ダーシーが現代の形に変更しました[2]。20世紀初頭、ドイツの空力学者ルートヴィヒ・プラントルは、静的圧力測定とピトー管を組み合わせてピトー静的チューブに組み込み、現在広く使用されています。

ピトー静的チューブの概略図を図 1 に示します。管内には2つの開口部があり、一方の開口部は停滞圧力を感知するために流れに直接面し、もう一方の開口部は静圧を測定するために流れに垂直である。


図 1.ピトー静的チューブの回路図。

圧力差は、通常、圧力トランスデューサによって測定される流速を決定するために必要です。この実験では、液体カラムの圧計を使用して、圧力の変化を測定するための良好な視覚を提供します。圧力差は次のように決定されます。

Δhはマノメーターの高さの差であり、εLはマノメーター内の液体の密度であり、gは重力による加速度である。方程式 2 と 3 を組み合わせると、流量速度は次のように予測されます。

手順

1.対気速度の変化に伴う圧力測定値を記録します。

  1. ピトースタティックチューブの2つのリード線を、マノメーターの2つのポートに接続します。マノメーターは、着色された油で満たされ、水インチの卒業としてマークする必要があります。
  2. ピトースタティックチューブをねじ込み継ぎに挿入して、センシングヘッドが風洞のテストセクションの中央にあり、チューブが上流を向いていることを示します。テストセクションは 1 フィート x 1 フィートで、風洞は 140 mph の対気速度を維持できる必要があります。
  3. 傾斜計を使用して、ピトー静的チューブを攻撃角度を 0 度に調整します。
  4. 時速 50 マイルで風洞を実行し、圧力差の読み取り値を記録します。
  5. 風洞の対気速度を 10 mph 上げ、圧力差を記録します。
  6. 対気速度が 130 mph に達するまで 1.5 を繰り返します。

2.攻撃の正の角度でピトー静的チューブの精度を調査します。

  1. 傾斜計を使用して、攻撃角度を正の4°に調整します。
  2. 時速 100 mph で風洞を実行し、圧力差の読み取り値を記録します。
  3. 攻撃角度を4°ずつ上げ、28°の角度まで2.1~2.2を繰り返します。すべての結果を記録します。

結果

代表的な結果を表 1および表 2に示します。実験の結果は実際の風速と良好に一致している。ピトー静的管は、約4.2%の誤差の最大パーセンテージで対気速度を正確に予測しました。これは、風洞の対気速度の設定のエラー、Pitot-static チューブのマノメーターと計測器のエラーの読み取りエラーに起因する可能性があります。

表 1.様々な風洞速度での操縦計の読み取りに基づいて、対気速度と誤差を計算しました。

風洞対気速度(時速) マノメーターの読み取り(水中) 計算された対気速度 (時速) パーセントエラー (%)
50 1.1 48.04 -3.93
60 1.6 57.93 -3.45
70 2.15 67.16 -4.06
80 2.8 76.64 -4.20
90 3.6 86.90 -3.45
100 4.4 96.07 -3.93
110 5.4 106.43 -3.25
120 6.5 116.77 -2.69
130 7.8 127.91 -1.61

表 2.アタッチの様々な角度での操縦計の読み取りに基づいて、対気速度と誤差を計算しました。

ピトー静的チューブ攻撃角度(°) マノメーターの測定値(水中) 計算された対気速度 (時速) パーセントエラー (%)
0 4.4 96.07 0.00
4 4.5 97.16 1.13
8 4.5 97.16 1.13
12 4.6 98.23 2.25
16 4.65 98.76 2.80
20 4.7 99.29 3.35
24 4.55 97.69 1.69
28 4.3 94.97 -1.14

表 2 では、パーセンテージ エラーが表 1 のゼロアングルの場合と比較されます。結果は、ピトー静的チューブが流れ方向とのずれに対して無感覚であることを示しています。最も高い不一致は、約20°の攻撃の角度で発生しました。ゼロ角度読み取りに対して3.35%の誤差が得られた。攻撃の角度が大きくなるにつれて、停滞と静的圧力の両方の測定値が減少しました。2つの圧力の読書は管が30°までの攻撃の角度のために3-4%に正確である速度の読書を得るように互いに補償する傾向がある。これはピトー管の他のタイプよりPrandtlの設計の主な利点である。

申請書と概要

対気速度情報は、航空機やドローンなどの航空用途に不可欠です。ピトースタティックチューブは、通常、コックピットのフロントパネルで対気速度を示すために機械メーターに接続されます。民間航空機の場合は、機内飛行制御システムにも接続されています。

ピトー静的システムの読み取り値のエラーは非常に危険です。通常、民間航空機には 1 つまたは 2 つの冗長ピトースタティック システムがあります。氷の蓄積を防ぐために、ピトー管は飛行中に加熱される。多くの民間航空会社の事故や事故は、ピトー静的システムの障害にたどり着きました。例えば、2008年にエア・カライベスは、A330s[3]でピトー管アイシングの誤動作の2つの事件を報告しました。

業界では、ダクトとチューブの対気速度は、風速計やその他の流量計を取り付けるのが困難なピトーチューブで測定できます。ピトー管は管の小さい穴を通して容易に挿入することができる。

このデモンストレーションでは、風洞におけるピトー静電気管の使用を検討し、その測定を用いて風洞の対気速度を予測した。ピトー静的管によって予測された結果は、風洞の設定とよく相関していました。ピトー静的管のミスアライメントの可能性の感度も調査され、ピトー静的チューブは28°までの不整列と攻撃角度に特に敏感ではないと結論付けました。

タグ

スキップ先...

0:01

Concepts

3:02

Measuring Air Speed Using a Pitot-static Tube

5:11

Results

このコレクションのビデオ:

article

Now Playing

ピトースタティックチューブ:空気の流速を測定する装置

Aeronautical Engineering

49.3K 閲覧数

article

模型航空機の空力性能:DC-6B

Aeronautical Engineering

8.3K 閲覧数

article

プロペラの特性評価:性能のピッチ、直径、ブレード数の変動

Aeronautical Engineering

26.5K 閲覧数

article

翼挙動:クラークY-14翼上の圧力分布

Aeronautical Engineering

21.2K 閲覧数

article

クラークY-14ウィング性能:ハイリフトデバイス(フラップとスラット)の展開

Aeronautical Engineering

13.5K 閲覧数

article

乱流球法:風洞流量の評価

Aeronautical Engineering

8.7K 閲覧数

article

円筒形のクロスフロー:圧力分布の測定とドラッグ係数の推定

Aeronautical Engineering

16.3K 閲覧数

article

ノズル解析:収束と収束発散ノズルに沿ったマッハ数と圧力の変動

Aeronautical Engineering

38.0K 閲覧数

article

シュリーレンイメージング:超音速流機能を可視化する技術

Aeronautical Engineering

11.8K 閲覧数

article

水洞における流れの可視化:デルタウィング上の最先端渦の観察

Aeronautical Engineering

8.2K 閲覧数

article

表面染料フロー可視化:超音速流のストリークラインパターンを観察する定性的方法

Aeronautical Engineering

4.9K 閲覧数

article

一定温度麻酔:乱流境界層の流れを研究するツール

Aeronautical Engineering

7.3K 閲覧数

article

圧力トランスデューサ:ピトースタティックチューブを用いてキャリブレーション

Aeronautical Engineering

8.5K 閲覧数

article

リアルタイムフライトコントロール:埋め込みセンサーキャリブレーションとデータ取得

Aeronautical Engineering

10.3K 閲覧数

article

マルチコプターエアロダイナミクス:ヘキサコプター上の推力の特徴付け

Aeronautical Engineering

9.2K 閲覧数

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved