サインイン

X-ray Photoelectron Spectroscopy

概要

Source: Faisal Alamgir, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA

X-ray photoelectron spectroscopy (XPS) is a technique that measures the elemental composition, empirical formula, chemical state and electronic state of the elements that exist within a material. XPS spectra are obtained by irradiating a material with a beam of X-rays while simultaneously measuring the kinetic energy and number of electrons that escape from the top several nanometers of the material being analyzed (within ~ the top 10 nm, for typical kinetic energies of the electrons). Due to the fact that the signal electrons escape predominantly from within the first few nanometers of the material, XPS is considered a surface analytical technique.

The discovery and the application of the physical principles behind XPS or, as it was known earlier, electron spectroscopy for chemical analysis (ESCA), led to two Nobel prizes in physics. The first was awarded in 1921 to Albert Einstein for his explanation of the photoelectric effect in 1905. The photoelectric effect underpins the process by which signal is generated in XPS. Much later, Kai Siegbahn developed ESCA based on some of the early works by Innes, Moseley, Rawlinson and Robinson, and recorded, in 1954, the first high-energy-resolution XPS spectrum of NaCl. Further demonstration of the power of ESCA/XPS for chemical analysis, together with the development of the associated instrumentation for the technique, led to the first commercial monochromatic XPS instrument in 1969 and the Nobel Prize for Physics in 1981 to Siegbahn in acknowledgement of his extensive efforts to develop the technique as an analytical tool.

手順

The following procedure applies to a specific XPS instrument and its associated software, and there may be some variations when other instruments are used.

  1. The sample is a thin film of Pt (3 atomic layers thick) grown on a single layer of graphene, which is supported on a commercial silica (SiO2) glass slide. The graphene (which is a single layer of carbon) was grown on Cu and then transferred to the glass substrate. The Pt atomic layers were then deposited by electrodeposition methods.
  2. Log in or to access full content. Learn more about your institution’s access to JoVE content here

結果

Figure 1 shows a survey spectrum from the sample, clearly showing the Pt, Si, C and O emissions. In Figure 2, we see the high resolution scan of the Pt 4f7/2 and 4f5/2 peaks from the sample. The binding energies of each of the core level peaks can be compared to those found in databases such as the one maintained by the National Institute of Standards and Technology (NIST) (at https://srdata.nist.gov/xp

Log in or to access full content. Learn more about your institution’s access to JoVE content here

申請書と概要

XPS is a surface chemical analysis technique that is versatile in the range of samples it can be used to investigate. The technique provides quantification of chemical composition, chemical state and the occupied electronic structure of the atoms within a material.

XPS provides elemental the composition of the surface (within 1-10 nm usually), and can be used to determine the empirical formula of the surface compounds, the identity of elements that contaminate a surface, the chemical or elect

Log in or to access full content. Learn more about your institution’s access to JoVE content here

タグ
X ray Photoelectron SpectroscopyXPSSurface ChemistryNon destructive TechniqueMaterial AnalysisX ray EnergyCore Shell ElectronBinding EnergiesChemical CompositionState Of The MaterialXPS SpectrumPhoton AbsorptionWork FunctionPhotoelectronsX ray SourcesAluminum K Alpha

スキップ先...

0:08

Overview

1:01

Principles of X-Ray Photoelectron Spectroscopy

3:01

Loading a Sample for Study

5:06

Collecting an XPS Spectrum

7:14

Results

7:48

Applications

8:52

Summary

このコレクションのビデオ:

article

Now Playing

X-ray Photoelectron Spectroscopy

Materials Engineering

21.0K 閲覧数

article

Optical Materialography Part 1: Sample Preparation

Materials Engineering

13.0K 閲覧数

article

Optical Materialography Part 2: Image Analysis

Materials Engineering

8.6K 閲覧数

article

X-ray Diffraction

Materials Engineering

85.5K 閲覧数

article

Focused Ion Beams

Materials Engineering

8.7K 閲覧数

article

Directional Solidification and Phase Stabilization

Materials Engineering

6.4K 閲覧数

article

Differential Scanning Calorimetry

Materials Engineering

35.5K 閲覧数

article

Thermal Diffusivity and the Laser Flash Method

Materials Engineering

13.0K 閲覧数

article

Electroplating of Thin Films

Materials Engineering

19.4K 閲覧数

article

Analysis of Thermal Expansion via Dilatometry

Materials Engineering

15.3K 閲覧数

article

Electrochemical Impedance Spectroscopy

Materials Engineering

22.6K 閲覧数

article

Ceramic-matrix Composite Materials and Their Bending Properties

Materials Engineering

7.9K 閲覧数

article

Nanocrystalline Alloys and Nano-grain Size Stability

Materials Engineering

5.0K 閲覧数

article

Hydrogel Synthesis

Materials Engineering

23.0K 閲覧数

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved