JoVE Logo

Meld u aan

5.10 : Facilitated Transport

The chemical and physical properties of plasma membranes cause them to be selectively permeable. Since plasma membranes have both hydrophobic and hydrophilic regions, substances need to be able to transverse both regions. The hydrophobic area of membranes repels substances such as charged ions. Therefore, such substances need special membrane proteins to cross a membrane successfully. In facilitated transport, also known as facilitated diffusion, molecules and ions travel across a membrane via two types of membrane transport proteins: channel proteins and carrier proteins. These membrane transport proteins enable diffusion without requiring additional energy.

Channel Proteins

Channel proteins form a hydrophilic pore through which charged molecules can pass through, thus avoiding the hydrophobic layer of the membrane. Channel proteins are specific for a given substance. For example, aquaporins are channel proteins that specifically facilitate the transport of water through the plasma membrane.

Channel proteins are either always open or gated by some mechanism to control flow. Gated channels remain closed until a particular ion or substance binds to the channel, or some other mechanism occurs. Gated channels are found in the membranes of cells such as muscle cells and nerve cells. Muscle contractions occur when the relative concentrations of ions on the interior and exterior sides of a membrane change due to the controlled closing or opening of channel gates. Without a regulated barrier, muscle contraction would not occur efficiently.

Carrier Proteins

Carrier proteins bind to a specific substance causing a conformational change in the protein. The conformational change enables movement down the substance’s concentration gradient. For this reason, the rate of transport is not dependent on the concentration gradient, but rather on the number of carrier proteins available. Although it is known that proteins change shape when their hydrogen bonds are destabilized, the complete mechanism by which carrier proteins change their conformation is not well understood.

Diffusion Rates

Even though more involved than simple diffusion, facilitated transport enables diffusion to occur at incredible rates. Channel proteins move tens of millions of molecules a second, and carrier proteins move a thousand to a million molecules a second.

Tags

Facilitated TransportFacilitated DiffusionMembraneHydrophobic LayerChannel ProteinsCarrier ProteinsConformational ChangeConcentration GradientTransport RatePlasma MembranesHydrophobic RegionHydrophilic RegionMembrane Proteins

Van hoofdstuk 5:

article

Now Playing

5.10 : Facilitated Transport

Membranes and Cellular Transport

123.5K weergaven

article

5.1 : What are Membranes?

Membranes and Cellular Transport

152.3K weergaven

article

5.2 : Membrane Fluidity

Membranes and Cellular Transport

151.0K weergaven

article

5.3 : The Fluid Mosaic Model

Membranes and Cellular Transport

144.3K weergaven

article

5.4 : What is an Electrochemical Gradient?

Membranes and Cellular Transport

109.2K weergaven

article

5.5 : Diffusion

Membranes and Cellular Transport

187.7K weergaven

article

5.6 : Osmosis

Membranes and Cellular Transport

164.6K weergaven

article

5.7 : Tonicity in Animals

Membranes and Cellular Transport

116.7K weergaven

article

5.8 : Tonicity in Plants

Membranes and Cellular Transport

53.0K weergaven

article

5.9 : Introduction to Membrane Proteins

Membranes and Cellular Transport

66.1K weergaven

article

5.11 : Primary Active Transport

Membranes and Cellular Transport

173.4K weergaven

article

5.12 : Secondary Active Transport

Membranes and Cellular Transport

117.5K weergaven

article

5.13 : Receptor-mediated Endocytosis

Membranes and Cellular Transport

103.9K weergaven

article

5.14 : Pinocytosis

Membranes and Cellular Transport

65.4K weergaven

article

5.15 : Phagocytosis

Membranes and Cellular Transport

77.6K weergaven

See More

JoVE Logo

Privacy

Gebruiksvoorwaarden

Beleid

Onderzoek

Onderwijs

Over JoVE

Auteursrecht © 2025 MyJoVE Corporation. Alle rechten voorbehouden