Zaloguj się

Organisms harvest energy from food, but this energy cannot be directly used by cells. Cells convert the energy stored in nutrients into a more usable form: adenosine triphosphate (ATP).

ATP stores energy in chemical bonds that can be quickly released when needed. Cells produce energy in the form of ATP through the process of cellular respiration. Although much of the energy from cellular respiration is released as heat, some of it is used to make ATP.

During cellular respiration, several oxidation-reduction (redox) reactions transfer electrons from organic molecules to other molecules. Here, oxidation refers to electron loss and reduction to electron gain. The electron carriers NAD+ and FAD and their reduced forms, NADH and FADH2, respectively, are essential for several steps of cellular respiration.

Aerobic respiration requires oxygen and generates ATP by breaking down glucose and oxygen into carbon dioxide and water. Some prokaryotes use anaerobic respiration, which does not require oxygen. Both aerobic and anaerobic respiration begins with glycolysis, which can occur without oxygen. Glycolysis breaks down glucose into pyruvate, yielding ATP. In the absence of oxygen, pyruvate ferments, producing NAD+ for continued glycolysis. Importantly, several types of yeast carry out alcoholic fermentation. Human muscle cells can use lactic acid fermentation when oxygen is depleted. Anaerobic respiration ends with fermentation.

Aerobic respiration, however, continues with pyruvate oxidation. Pyruvate oxidation generates acetyl-CoA, which enters the citric acid cycle. The citric acid cycle consists of several redox reactions that release the bond energy of acetyl-CoA, producing ATP and the reduced electron carriers NADH and FADH2.

The final stage of cellular respiration, oxidative phosphorylation, generates most of the ATP. NADH and FADH2 pass their electrons through the electron transport chain. The electron transport chain releases energy that is used to expel protons, creating a proton gradient that enables ATP synthesis.

Most organisms use aerobic (oxygen-requiring) respiration, which produces much more ATP than anaerobic respiration.

Tagi
Cellular RespirationCatabolic ProcessOrganic MoleculesElectron Transport ChainOxygenCarbon DioxideWaterHeatATPGlucoseEquationGlycolysisPyruvate OxidationCitric Acid CycleOxidative PhosphorylationMitochondriaFlagellar MovementMuscle ContractionATP ProductionNutrientsAdenosine Triphosphate ATPChemical BondsOxidation

Z rozdziału 8:

article

Now Playing

8.11 : Introduction to Cellular Respiration

Cellular Respiration

170.4K Wyświetleń

article

8.1 : Co to jest glikoliza?

Cellular Respiration

161.0K Wyświetleń

article

8.2 : Energochłonne etapy glikolizy

Cellular Respiration

161.6K Wyświetleń

article

8.3 : Etapy glikolizy uwalniające energię

Cellular Respiration

137.3K Wyświetleń

article

8.4 : Utlenianie pirogronianu

Cellular Respiration

156.2K Wyświetleń

article

8.5 : Cykl kwasu cytrynowego

Cellular Respiration

148.4K Wyświetleń

article

8.6 : Łańcuchy transportu elektronów

Cellular Respiration

94.4K Wyświetleń

article

8.7 : Chemiosmoza

Cellular Respiration

94.9K Wyświetleń

article

8.8 : Nośniki elektronów

Cellular Respiration

82.7K Wyświetleń

article

8.9 : Fermentacja

Cellular Respiration

111.5K Wyświetleń

article

8.10 : Powiązania dietetyczne

Cellular Respiration

49.0K Wyświetleń

article

8.12 : Produkty cyklu kwasu cytrynowego

Cellular Respiration

97.2K Wyświetleń

article

8.13 : Wyniki glikolizy

Cellular Respiration

97.5K Wyświetleń

article

8.14 : Wydajność ATP

Cellular Respiration

67.7K Wyświetleń

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone