JoVE Logo

Zaloguj się

4.2 : Protein-protein Interfaces

Many proteins form complexes to carry out their functions, making protein-protein interactions (PPIs) essential for an organism's survival. Most PPIs are stabilized by numerous weak noncovalent chemical forces. The physical shape of the interfaces determines the way two proteins interact. Many globular proteins have closely-matching shapes on their surfaces, which form a large number of weak bonds. Additionally, many PPIs occur between two helices or between a surface cleft and a polypeptide chain or string.

Various computational and biochemical methods are used to study protein interfaces. Laboratory methods, such as affinity purification, mass spectrometry, and protein microarrays, can be used to identify new interactions. Co-immunoprecipitation of proteins and yeast two-hybrid screening are widely used to provide evidence on whether two proteins interact in vitro. Computer programs can predict PPIs based on similar interactions found in other proteins by comparing protein sequences and three-dimensional structures. Other computational approaches, such as phylogenetic profiling, predict PPIs based on the coevolution of binding partners. Additionally, gene fusion analysis is used to predict interaction partners by finding protein pairs that are fused in the genome of other organisms.

Proteins typically interact with multiple partners either at the same or different times, and they may contain more than one interaction interface. Many proteins form large complexes that perform specific functions that can only be carried out by the complete complex. In some cases, these protein interactions are regulated; that is, a protein may interact with different partners based on cellular needs. Further computational and statistical analyses sort such interactions into networks, which are curated in online interactome databases. These searchable databases enable users to study specific protein interactions, as well as design drugs that can enhance or disrupt interactions at the interface.

Tagi

Protein protein InterfacesProtein ComplexesOligomersKinesin DimerCytoskeletal MicrotubulesAlpha tubulinBeta tubulinNon covalent BondsSurface surface InteractionLigand Binding SitesHydrophobic ForcesCovalent Disulfide BondsProtein Kinase ACleftPolypeptide LoopsSurface string InteractionHelix helix InteractionCoiled coil Interaction

Z rozdziału 4:

article

Now Playing

4.2 : Protein-protein Interfaces

Protein Function

12.4K Wyświetleń

article

4.1 : Miejsca wiązania ligandów

Protein Function

12.7K Wyświetleń

article

4.3 : Zachowane miejsca wiązania

Protein Function

4.1K Wyświetleń

article

4.4 : Stała wiązania równowagi i siła wiązania

Protein Function

12.8K Wyświetleń

article

4.5 : Kofaktory i koenzymy

Protein Function

7.3K Wyświetleń

article

4.6 : Regulacja allosteryczna

Protein Function

13.9K Wyświetleń

article

4.7 : Wiązanie i wiązanie ligandów

Protein Function

4.7K Wyświetleń

article

4.8 : Kooperacyjne przejścia allosteryczne

Protein Function

7.8K Wyświetleń

article

4.9 : Fosforylacja

Protein Function

5.9K Wyświetleń

article

4.10 : Kinazy białkowe i fosfatazy

Protein Function

13.0K Wyświetleń

article

4.11 : OWSPazy i ich regulacja

Protein Function

8.2K Wyświetleń

article

4.12 : Kowalencyjnie połączone regulatory białek

Protein Function

6.8K Wyświetleń

article

4.13 : Kompleksy białkowe z wymiennymi częściami

Protein Function

2.5K Wyświetleń

article

4.14 : Mechaniczne funkcje białek

Protein Function

4.9K Wyświetleń

article

4.15 : Strukturalna funkcja białka

Protein Function

27.3K Wyświetleń

See More

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone