JoVE Logo

Zaloguj się

7.6 : Fixing Double-strand Breaks

The double-stranded structure of DNA has two major advantages. First, it serves as a safe repository of genetic information where one strand serves as the back-up in case the other strand is damaged. Second, the double-helical structure can be wrapped around proteins called histones to form nucleosomes, which can then be tightly wound to form chromosomes. This way, DNA chains up to 2 inches long can be contained within microscopic structures in a cell. A double-stranded break not only damages both copies of genetic information but also disrupts the continuity of DNA, making the chromosome fragile.

In a cell, there are an estimated ten double-strand breaks (DSBs) per day. The primary source of damage is metabolic by-products such as Reactive Oxygen Species and environmental factors such as ionizing radiations. Although less common, malfunctioning nuclear enzymes can also cause DSBs. Failure of enzymes like type II topoisomerases, which cut both strands of DNA and rejoin them while disentangling chromosomes, can inadvertently result in DSBs. Mechanical stress on the DNA duplex can also lead to DSBs. In prokaryotes, prolonged desiccation strains DNA, causing DSBs.

Of the two mechanisms for DNA repair, homologous recombination depends on a sister chromatid being nearby, which happens during the S and G2 phases. Due to this restriction, in the absence of a homology donor, cells have to resort to Nonhomologous end joining (NHEJ), even though it is much less accurate. It has been hypothesized that the reason higher eukaryotes can afford to preferentially utilize NHEJ for DSB repairs is that they have abundant non-coding DNA, which permits nucleotide substitutions, deletions or additions without grievous consequences.

Tagi

Double strand BreaksDNA RepairNon homologous End JoiningDNA End binding Heterodimeric Protein KuDNA dependent Protein KinaseDNA PolymeraseDNA Ligase IVMutationsGenomic RearrangementsHomologous RecombinationSingle stranded Overhangs

Z rozdziału 7:

article

Now Playing

7.6 : Fixing Double-strand Breaks

DNA Repair and Recombination

11.9K Wyświetleń

article

7.1 : Przegląd naprawy DNA

DNA Repair and Recombination

29.8K Wyświetleń

article

7.2 : Naprawa wycięcia podstawy

DNA Repair and Recombination

21.8K Wyświetleń

article

7.3 : Naprawa wycięcia podstawy z długą łatą

DNA Repair and Recombination

6.9K Wyświetleń

article

7.4 : Naprawa przez wycinanie nukleotydów

DNA Repair and Recombination

11.2K Wyświetleń

article

7.5 : Translezja DNA Polimerazy

DNA Repair and Recombination

9.7K Wyświetleń

article

7.7 : Uszkodzenie DNA może zatrzymać cykl komórkowy

DNA Repair and Recombination

9.0K Wyświetleń

article

7.8 : Rekombinacja homologiczna

DNA Repair and Recombination

50.0K Wyświetleń

article

7.9 : Ponowne uruchamianie zablokowanych widełek replikacji

DNA Repair and Recombination

5.7K Wyświetleń

article

7.10 : Konwersja genów

DNA Repair and Recombination

9.6K Wyświetleń

article

7.11 : Przegląd transpozycji i rekombinacji

DNA Repair and Recombination

15.1K Wyświetleń

article

7.12 : Transpozony tylko DNA

DNA Repair and Recombination

14.3K Wyświetleń

article

7.13 : Retrowirusy

DNA Repair and Recombination

12.2K Wyświetleń

article

7.14 : Retrotranspozony LTR

DNA Repair and Recombination

17.3K Wyświetleń

article

7.15 : Retrotranspozony inne niż LTR

DNA Repair and Recombination

11.3K Wyświetleń

See More

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone