Zaloguj się

Biological membranes show uneven distribution of different types of lipids in the inner and outer layers, resulting in transverse asymmetric membranes. The treatment of the erythrocyte membrane with the enzyme phospholipase confirmed the asymmetric nature of the lipid bilayer. The enzyme hydrolyzes lipids into fatty acids and hydrophilic groups. The phospholipase acts only on the outer layer of the membrane, while the inner layer remains intact. The phospholipase treatment resulted in 80% degradation of total membrane phosphatidylcholine (PC), while only 20% of phosphatidylserine (PS) and phosphatidylethanolamine (PE). The experimental result suggested that in erythrocyte membranes, the majority of PC is present in the outer layer, whereas the PS and PE are prominently located in the inner layer.

The distribution of lipids in each layer of the bilayer happens according to their functional needs as the inner and the outer layer of a lipid bilayer face different environments. For example, negatively charged PS is necessary for the functioning of intracellular enzymes such as protein kinase C. Phosphatidylinositol (PI) is also present in the inner layer; when phosphorylated, it binds and localizes various cytosolic proteins involved in cell signaling.

Some lipids like sphingolipids and cholesterol are known to form microdomains in the outer layer which looks like small islands in the membrane sea called the lipid rafts. These microdomains are often associated with the glycoinositolphospholipids or GPI-coupled proteins, generating lateral membrane asymmetry. Apart from the lipids, proteins, and carbohydrates also contribute to lipid asymmetry. The inner and outer layer is associated with different proteins, whereas carbohydrates, in the form of glycoproteins and glycolipids, are always associated with the outer layer, further adding to the membrane asymmetry.

Tagi

Asymmetric Lipid BilayerBiological MembranesLipidsInner LayerOuter LayerTransverse Asymmetric MembranesEnzyme PhospholipaseFatty AcidsHydrophilic GroupsPhosphatidylcholine PCPhosphatidylserine PSPhosphatidylethanolamine PEErythrocyte MembranesLipid DistributionFunctional NeedsNegatively Charged PSProtein Kinase CPhosphatidylinositol PIPhosphorylated LipidsSphingolipidsCholesterolMicrodomainsLipid Rafts

Z rozdziału 12:

article

Now Playing

12.5 : Asymmetric Lipid Bilayer

Membrane Structure and Components

6.9K Wyświetleń

article

12.1 : Co to są membrany?

Membrane Structure and Components

11.9K Wyświetleń

article

12.2 : Płynność membrany

Membrane Structure and Components

10.6K Wyświetleń

article

12.3 : Model płynnej mozaiki

Membrane Structure and Components

10.8K Wyświetleń

article

12.4 : Lipidy błonowe

Membrane Structure and Components

17.5K Wyświetleń

article

12.6 : Transportery regulujące asymetrię membran

Membrane Structure and Components

4.1K Wyświetleń

article

12.7 : Węglowodany błonowe

Membrane Structure and Components

4.9K Wyświetleń

article

12.8 : Białka błonowe

Membrane Structure and Components

12.7K Wyświetleń

article

12.9 : Lipidy jako kotwice

Membrane Structure and Components

5.4K Wyświetleń

article

12.10 : Jednoprzebiegowe białka transbłonowe

Membrane Structure and Components

4.7K Wyświetleń

article

12.11 : Wieloprzebiegowe białka transbłonowe i beczki β

Membrane Structure and Components

5.2K Wyświetleń

article

12.12 : Oczyszczanie białek błonowych detergentem

Membrane Structure and Components

5.0K Wyświetleń

article

12.13 : Dyfuzja białek w błonie

Membrane Structure and Components

4.2K Wyświetleń

article

12.14 : Domeny membranowe

Membrane Structure and Components

5.0K Wyświetleń

article

12.15 : Mechanizmy powstawania domen błonowych

Membrane Structure and Components

2.9K Wyświetleń

See More

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone