Zaloguj się

Eukaryotic cells acquire nutrients for growth and proliferation. Nutrients and other molecules that require degradation are internalized from the extracellular space by a process called endocytosis. The term ‘endocytosis' was first coined by Christian de Duve in 1963.

Endocytosis always begins with the plasma membrane enclosing an incoming molecule to form a transport vesicle which, in some cases, can be coated with a protein called ‘clathrin.' Endocytosed material is either sorted through vesicles called early endosomes or can be utilized by the cell as in case of certain nutrients or is degraded upon fusion with a lysosome. All vesicles containing the material endocytosed for the purpose of degradation eventually fuse with a lysosome. Three main types of endocytosis include phagocytosis, pinocytosis, and receptor-mediated endocytosis.

In phagocytosis, specialized immune cells called phagocytes engulf pathogenic microorganisms, including parasites, playing a vital role in providing immunity to the host organism. The internalized pathogens are contained in a vesicle called ‘phagosome,' which later fuses with a lysosome. Additionally, cellular waste material such as cell debris of other dying cells is also engulfed by phagocytes and degraded upon fusion with a lysosome. However, some pathogenic organisms take advantage of endocytosis to enter a cell and infect the host organism.

Pinocytosis is another mode of endocytosis, where a cell can engulf dissolved substances from the extracellular space. The third type of endocytosis, called receptor-mediated endocytosis, is a very specific process wherein an incoming molecule is only internalized after it binds to its associated receptor. Both pinocytosis and receptor-mediated endocytosis are followed by a process where a coated vesicle containing the endocytosed fluid or molecule fuses with an early endosome.

Tagi
EndocytosisEukaryotic CellsNutrientsDegradationExtracellular SpaceTransport VesicleClathrinEarly EndosomesLysosomePhagocytosisPinocytosisReceptor mediated EndocytosisPhagocytesImmunityPathogensPhagosome

Z rozdziału 18:

article

Now Playing

18.1 : Endocytosis

Endocytosis and Exocytosis

8.1K Wyświetleń

article

18.2 : Fagocytozy

Endocytosis and Exocytosis

5.7K Wyświetleń

article

18.3 : Pinocytoza

Endocytosis and Exocytosis

3.1K Wyświetleń

article

18.4 : Endocytoza zależna od receptorów

Endocytosis and Exocytosis

5.7K Wyświetleń

article

18.5 : Wczesny endosom: endocytoza transferyny

Endocytosis and Exocytosis

3.2K Wyświetleń

article

18.6 : Dojrzewanie endosomów

Endocytosis and Exocytosis

4.0K Wyświetleń

article

18.7 : Pęcherzyki śródświetlne i ciałka wielopęcherzykowe

Endocytosis and Exocytosis

3.2K Wyświetleń

article

18.8 : Regulacja receptora w dół w MVB

Endocytosis and Exocytosis

2.0K Wyświetleń

article

18.9 : Przegląd egzosomów

Endocytosis and Exocytosis

2.6K Wyświetleń

article

18.10 : Recykling endosomów i transcytozy

Endocytosis and Exocytosis

2.5K Wyświetleń

article

18.11 : Transcytoza IgG

Endocytosis and Exocytosis

2.6K Wyświetleń

article

18.12 : Egzocytoza

Endocytosis and Exocytosis

6.0K Wyświetleń

article

18.13 : Przegląd pęcherzyków wydzielniczych

Endocytosis and Exocytosis

5.9K Wyświetleń

article

18.14 : Pęcherzyki wydzielnicze insuliny

Endocytosis and Exocytosis

4.7K Wyświetleń

article

18.15 : Fuzja pęcherzyków wydzielniczych z błoną plazmatyczną

Endocytosis and Exocytosis

8.1K Wyświetleń

See More

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone