JoVE Logo

Zaloguj się

18.15 : Fusion of Secretory Vesicles with the Plasma Membrane

Proteins and neurotransmitters in secretory vesicles can be released from a cell upon vesicle docking, priming, and fusion with the plasma membrane. Vesicles are docked and primed in preparation for the quick exocytosis of their contents in response to a stimulus. The fusion process is mainly carried out by a SNAP Receptor or SNARE complex, consisting of synaptobrevin, syntaxin-1, and SNAP-25.

In 1993, Jim Rothman proposed that the antiparallel pairing of vesicular and transmembrane SNAREs, or v- and t-SNAREs, was essential for vesicle docking. However, more recently, it has been shown that vesicle docking can also occur without SNAREs. Additionally, two soluble proteins, N-ethylmaleimide-sensitive fusion protein (NSF) and soluble NSF attachment proteins (SNAP), bind to the SNARE complex to facilitate fusion.

The v-and t-SNAREs partially fuse in the priming process, forming a fusion-ready state. The protein complexin (Cpx) clamps the SNAREs and holds the vesicles in this partially fused state to prevent premature exocytosis. Vesicular membrane fusion begins when a stimulus, such as an action potential at the axonal terminal of a neuron, opens up a calcium channel, and calcium enters the cell. A total of five calcium ions bind to each synaptotagmin (Syt) – a vesicular membrane protein on either side of the vesicle. Calcium-bound Syt releases the Cpx clamp from the SNARE complexes and opens up the fusion pore to release the neurotransmitter. After fusion, NSF and SNAP proteins disassemble SNARE complexes for recycling.

Bacterial neurotoxins, such as botulinum from Clostridium botulinum or tetanus from Clostridium tetani, can inhibit secretory vesicle fusion by damaging the SNARE proteins, which prevents the fusion of secretory vesicles with the neuronal plasma membrane. As neurotransmitters are not released, action potentials are not generated, causing paralysis of muscles, and in some cases, death.

Tagi

Secretory VesiclesPlasma MembraneNeurotransmittersDockingPrimingFusionSNAP ReceptorSNARE ComplexSynaptobrevinSyntaxin 1SNAP 25Vesicle DockingV SNAREsT SNAREsN ethylmaleimide sensitive Fusion Protein NSFSoluble NSF Attachment Proteins SNAPComplexin CpxPartially Fused StateCalcium ChannelSynaptotagmin SytFusion Pore

Z rozdziału 18:

article

Now Playing

18.15 : Fusion of Secretory Vesicles with the Plasma Membrane

Endocytosis and Exocytosis

10.9K Wyświetleń

article

18.1 : Endocytoza

Endocytosis and Exocytosis

9.0K Wyświetleń

article

18.2 : Fagocytozy

Endocytosis and Exocytosis

6.0K Wyświetleń

article

18.3 : Pinocytoza

Endocytosis and Exocytosis

3.2K Wyświetleń

article

18.4 : Endocytoza zależna od receptorów

Endocytosis and Exocytosis

6.0K Wyświetleń

article

18.5 : Wczesny endosom: endocytoza transferyny

Endocytosis and Exocytosis

3.2K Wyświetleń

article

18.6 : Dojrzewanie endosomów

Endocytosis and Exocytosis

4.1K Wyświetleń

article

18.7 : Pęcherzyki śródświetlne i ciałka wielopęcherzykowe

Endocytosis and Exocytosis

3.4K Wyświetleń

article

18.8 : Regulacja receptora w dół w MVB

Endocytosis and Exocytosis

2.0K Wyświetleń

article

18.9 : Przegląd egzosomów

Endocytosis and Exocytosis

2.7K Wyświetleń

article

18.10 : Recykling endosomów i transcytozy

Endocytosis and Exocytosis

2.6K Wyświetleń

article

18.11 : Transcytoza IgG

Endocytosis and Exocytosis

2.7K Wyświetleń

article

18.12 : Egzocytoza

Endocytosis and Exocytosis

6.5K Wyświetleń

article

18.13 : Przegląd pęcherzyków wydzielniczych

Endocytosis and Exocytosis

8.4K Wyświetleń

article

18.14 : Pęcherzyki wydzielnicze insuliny

Endocytosis and Exocytosis

4.8K Wyświetleń

See More

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone