Zaloguj się

In situ hybridization (ISH) is a technique used to detect and localize specific DNA or RNA molecules in cells, tissue, or tissue sections using a labeled probe. The technique was first used in 1969 for the investigation of nucleic acids. It is currently an essential tool in scientific research and clinical settings, especially for diagnostic purposes.

Types of probes and labels

A probe is a complementary strand of DNA or RNA that binds to corresponding nucleotide sequences in a cell. Many different probes, such as single-stranded DNA probes, double-stranded DNA probes, antisense RNA probes or riboprobes, and synthetic oligodeoxynucleotide probes, are used in in situ hybridization. The choice of probe depends on several factors, including their sensitivity, specificity, stability, and ease of penetration into the tissue sample.

These probes can be labeled with radioisotopes, fluorescent dyes, or other antigen molecules for detection purposes. The 3H, 35S, and 32P are widely used radiolabeled probes, while non-radioactive labels include biotin, digoxigenin, and fluorescein. These labels can be attached to the probe DNA molecule via end-labeling, nick-translation, or random primer synthesis methods. Detection methods, such as autoradiography, fluorescence microscopy, or immunohistochemistry, are used for target visualization based on the label attached to the hybridized probe.

Advantages and disadvantages of in situ hybridization

One of the major advantages of in situ hybridization is that it can even be applied to frozen tissues to enable maximum use of tissues that are difficult to obtain. In addition, it can be combined with other techniques, such as immunohistochemistry, to detect protein and active mRNA in the sample. However, while working with samples that have low DNA and RNA copies, it may be difficult to identify targets using in situ hybridization.

Tagi

Z rozdziału 16:

article

Now Playing

16.12 : In-situ Hybridization

Analyzing Gene Expression and Function

9.1K Wyświetleń

article

16.1 : Mutageneza in vitro

Analyzing Gene Expression and Function

4.1K Wyświetleń

article

16.2 : Badania genetyczne

Analyzing Gene Expression and Function

4.8K Wyświetleń

article

16.3 : Krzyż testowy

Analyzing Gene Expression and Function

1.7K Wyświetleń

article

16.4 : Testy komplementarne

Analyzing Gene Expression and Function

4.7K Wyświetleń

article

16.5 : Polimorfizmy pojedynczego nukleotydu-SNP

Analyzing Gene Expression and Function

13.5K Wyświetleń

article

16.6 : Transformacja bakteryjna

Analyzing Gene Expression and Function

11.6K Wyświetleń

article

16.7 : Organizmy transgeniczne

Analyzing Gene Expression and Function

3.8K Wyświetleń

article

16.8 : Klonowanie reprodukcyjne

Analyzing Gene Expression and Function

2.3K Wyświetleń

article

16.9 : Technologia CRISPR (CRISPR)

Analyzing Gene Expression and Function

15.0K Wyświetleń

article

16.10 : Eksperymentalne RNAi

Analyzing Gene Expression and Function

6.0K Wyświetleń

article

16.11 : Geny reportera

Analyzing Gene Expression and Function

11.0K Wyświetleń

article

16.13 : Immunoprecypitacja chromatyny - ChIP

Analyzing Gene Expression and Function

10.8K Wyświetleń

article

16.14 : Biologia syntetyczna

Analyzing Gene Expression and Function

4.6K Wyświetleń

article

16.15 : Profilowanie rybosomów

Analyzing Gene Expression and Function

3.4K Wyświetleń

See More

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone