Zaloguj się

Voltage-gated ion channels are transmembrane proteins that open and close in response to changes in the membrane potential. They are present on the membranes of all electrically excitable cells such as neurons, heart, and muscle cells.

Generally, all voltage-gated ion channels have a 'voltage-sensing domain' that spans the lipid bilayer. The charged residues in the sensor move in response to the membrane potential changes that open the channel allowing ions movement. There are several types of voltage-gated channels because these proteins show selective ion permeability based on ions' size and charge. For example, sodium ions, cannot pass through a potassium channel and vice versa.

Usually, these channels have an open and closed ion-conducting state. The ball and chain mechanism of action regulates the opening and closing of some classes of voltage-gated ion channels in response to the membrane potential. Here, in addition to the open and closed states, there is an inactivated state. As seen in the voltage-gated sodium channels, the inactivation gate acts as a plug or a lid that blocks the flow of sodium ions, which is the non-conducting state of the channel. Inherited or acquired defects in the sodium channel can cause abnormal neuronal firing seen in epileptic seizures, cardiac dysfunction, skeletal muscle weakness, and stiffness.

These channels have a vital role in various bodily functions. The voltage-gated calcium channels are pivotal in muscle contraction and neurotransmitter release. Potassium channels help repolarize the cell membrane after an action potential. Voltage-gated sodium channels help in membrane depolarization and propagation of the action potential.

A venomous snake, the Black mamba produces a deadly venom that blocks the voltage-gated potassium channels. This prevents the potassium ions from exiting the neuron during action potential propagation. Hence, the persistent depolarization by the sodium channels and prolonged release of the neurotransmitter acetylcholine may cause muscle hyperexcitability and convulsions.

Tagi
Voltage gated Ion ChannelsTransmembrane ProteinsMembrane PotentialVoltage sensing DomainIon PermeabilityOpen And Closed StatesBall And Chain MechanismInactivation GateInherited Or Acquired DefectsVoltage gated Calcium ChannelsMuscle ContractionNeurotransmitter ReleasePotassium ChannelsMembrane DepolarizationAction PotentialBlack MambaVenomPotassium Channel Blockade

Z rozdziału 14:

article

Now Playing

14.4 : Voltage-gated Ion Channels

Channels and the Electrical Properties of Membranes

7.7K Wyświetleń

article

14.1 : Akwaporyny

Channels and the Electrical Properties of Membranes

4.6K Wyświetleń

article

14.2 : Niebramkowane kanały jonowe

Channels and the Electrical Properties of Membranes

6.5K Wyświetleń

article

14.3 : Kanały jonowe bramkowane ligandem

Channels and the Electrical Properties of Membranes

12.0K Wyświetleń

article

14.5 : Kanały jonowe bramkowane mechanicznie

Channels and the Electrical Properties of Membranes

6.0K Wyświetleń

article

14.6 : Struktura neuronu

Channels and the Electrical Properties of Membranes

12.1K Wyświetleń

article

14.7 : Spoczynkowy potencjał błonowy

Channels and the Electrical Properties of Membranes

16.6K Wyświetleń

article

14.8 : Spadek potencjału spoczynkowego

Channels and the Electrical Properties of Membranes

4.5K Wyświetleń

article

14.9 : Potencjał czynnościowy

Channels and the Electrical Properties of Membranes

7.2K Wyświetleń

article

14.10 : Rodopsyny kanałowe

Channels and the Electrical Properties of Membranes

2.5K Wyświetleń

article

14.11 : Zacisk krosowy

Channels and the Electrical Properties of Membranes

5.2K Wyświetleń

article

14.12 : Synapsy elektryczne

Channels and the Electrical Properties of Membranes

7.8K Wyświetleń

article

14.13 : Synapsy chemiczne

Channels and the Electrical Properties of Membranes

8.3K Wyświetleń

article

14.14 : Pobudzające i hamujące działanie neuroprzekaźników

Channels and the Electrical Properties of Membranes

9.2K Wyświetleń

article

14.15 : Skurcz mięśni

Channels and the Electrical Properties of Membranes

5.9K Wyświetleń

See More

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone