Zaloguj się

If energy releases during a chemical reaction, then the resulting valuewill be a negative number. In other words, reactions that release energy have a ∆G < 0. A negative ∆G also means that the reaction's products have less free energy than the reactants because they gave off some free energy during the reaction. Scientists call reactions with a negative ∆G, and which consequently release free energy, exergonic reactions. Exergonic means energy is exiting the system. We also refer to these reactions as spontaneous reactions, because they can occur without adding energy into the system. Understanding which chemical reactions are spontaneous and release free energy is extremely useful for biologists because these reactions can be harnessed to perform work inside the cell. Contrary to the everyday use of the term, a spontaneous reaction is not one that suddenly or quickly occurs. Rusting iron is an example of a spontaneous reaction that occurs slowly, little by little, over time.

If a chemical reaction requires an energy input, then the ∆G for that reaction will be a positive value. In this case, the products have more free energy than the reactants. Thus, we can think of the reactions' products as energy-storing molecules. We call these chemical reactions endergonic reactions, and they are non-spontaneous. An endergonic reaction will not take place on its own without adding free energy.

For example, building complex molecules, such as sugars, from simpler ones is an anabolic process and requires energy. Therefore, the chemical reactions involved in anabolic processes are endergonic reactions. Alternatively, the catabolic process of breaking sugar down into simpler molecules releases energy in a series of exergonic reactions.

This text is adapted from Openstax, Biology 2e, Section 6.2: Potential, Kinetic, Free, and Activation Energy.

Tagi
Exergonic ReactionsEndergonic ReactionsEnergy ReleaseEnergy InputSpontaneous ReactionsNonspontaneous ReactionsAnabolic ProcessesCatabolic ProcessesFree EnergyGibbs Free Energy

Z rozdziału 3:

article

Now Playing

3.6 : Endergonic and Exergonic Reactions in the Cell

Energy and Catalysis

13.9K Wyświetleń

article

3.1 : Pierwsza zasada termodynamiki

Energy and Catalysis

5.2K Wyświetleń

article

3.2 : Druga zasada termodynamiki

Energy and Catalysis

4.8K Wyświetleń

article

3.3 : Entalpia w komórce

Energy and Catalysis

5.6K Wyświetleń

article

3.4 : Entropia w komórce

Energy and Catalysis

10.1K Wyświetleń

article

3.5 : Wprowadzenie do darmowej energii

Energy and Catalysis

7.9K Wyświetleń

article

3.7 : Stała wiązania równowagi i siła wiązania

Energy and Catalysis

8.9K Wyświetleń

article

3.8 : Darmowa energia i równowaga

Energy and Catalysis

5.9K Wyświetleń

article

3.9 : Nierównowaga w komórce

Energy and Catalysis

4.0K Wyświetleń

article

3.10 : Utlenianie i redukcja cząsteczek organicznych

Energy and Catalysis

5.7K Wyświetleń

article

3.11 : Wprowadzenie do enzymów

Energy and Catalysis

16.5K Wyświetleń

article

3.12 : Enzymy i energia aktywacji

Energy and Catalysis

11.2K Wyświetleń

article

3.13 : Wprowadzenie do kinetyki enzymów

Energy and Catalysis

19.2K Wyświetleń

article

3.14 : Liczba obrotów i wydajność katalityczna

Energy and Catalysis

9.7K Wyświetleń

article

3.15 : Katalitycznie doskonałe enzymy

Energy and Catalysis

3.8K Wyświetleń

See More

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone