Zaloguj się

The Cartesian coordinate system is a very convenient tool to use when describing the displacements and velocities of objects and the forces acting on them. However, it becomes cumbersome when we need to describe the rotation of objects. So, when describing rotation, the polar coordinate system is generally used.

Equation1

In the polar coordinate system, as shown in the above figure, the location of a point in a plane is given by two polar coordinates. The first polar coordinate is the radial coordinate, which is the distance to the point from the origin. The second polar coordinate is the angle that the radial vector makes with some chosen direction, usually the positive x-direction. In polar coordinates, angles are measured in radians, or rads.

The radial vector is attached at the origin and points away from the origin to the point. This radial direction is described by a unit radial vector, which can be written as the magnitude times the unit vector in that direction. The second unit vector is a vector orthogonal to the radial vector. The positive direction between the unit vectors indicates how the polar angle changes in the counterclockwise direction.

The transformation equation relates the polar and cartesian coordinates.

Equation1

Equation2

Cylindrical-coordinate systems are preferred over Cartesian or polar coordinates for systems with cylindrical symmetry. For example, to describe the surface of a cylinder, Cartesian coordinates require all three coordinates. On the other hand, the cylindrical coordinate system requires only one parameter—the cylinder's radius. As a result, the complicated mathematical calculations become simple.

Equation1

Cylindrical coordinates belong to the family of curvilinear coordinates. These are an extension of polar coordinates and describe a vector's position in three-dimensional space, as shown in the above figure. A vector in a cylindrical coordinate system is defined using the radial, polar, and z coordinate scalar components. The radial component is the same as the one used in the polar coordinates. It is the distance from the origin to point Q. Here, Q is the projection of point P in the xy plane. The azimuthal angle is again similar to the one used in polar coordinates and represents the angle between the x-axis and the line segment drawn from the origin to point Q. The third cylindrical coordinate, z, is the same as the z cartesian coordinate and denotes the distance of point P to the xy plane.

The transformation equations convert a vector in cylindrical coordinates to Cartesian coordinates.

Equation3

Equation4

Equation5

Tagi
Polar CoordinatesCylindrical CoordinatesCartesian CoordinatesRadial CoordinatePolar AngleAzimuthal AngleUnit Radial VectorUnit VectorCoordinate TransformationCylindrical SymmetryCurvilinear Coordinates

Z rozdziału 2:

article

Now Playing

2.4 : Polar and Cylindrical Coordinates

Vectors and Scalars

14.1K Wyświetleń

article

2.1 : Wprowadzenie do skalarów

Vectors and Scalars

13.7K Wyświetleń

article

2.2 : Wprowadzenie do wektorów

Vectors and Scalars

13.4K Wyświetleń

article

2.3 : Składowe wektorowe w kartezjańskim układzie współrzędnych

Vectors and Scalars

18.0K Wyświetleń

article

2.5 : Współrzędne sferyczne

Vectors and Scalars

9.7K Wyświetleń

article

2.6 : Algebra wektorowa: metoda graficzna

Vectors and Scalars

11.3K Wyświetleń

article

2.7 : Algebra wektorowa: metoda składników

Vectors and Scalars

13.3K Wyświetleń

article

2.8 : Iloczyn skalarny (iloczyn skalarny)

Vectors and Scalars

8.0K Wyświetleń

article

2.9 : Iloczyn wektorowy (iloczyn wektorowy)

Vectors and Scalars

9.2K Wyświetleń

article

2.10 : Potrójne iloczyny skalarne i wektorowe

Vectors and Scalars

2.2K Wyświetleń

article

2.11 : Operator gradientu i del

Vectors and Scalars

2.4K Wyświetleń

article

2.12 : Rozbieżność i zawijanie

Vectors and Scalars

1.6K Wyświetleń

article

2.13 : Drugie instrumenty pochodne i operator Laplace'a

Vectors and Scalars

1.1K Wyświetleń

article

2.14 : Całki liniowe, powierzchniowe i objętościowe

Vectors and Scalars

2.1K Wyświetleń

article

2.15 : Rozbieżność i twierdzenia Stokesa

Vectors and Scalars

1.4K Wyświetleń

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone