Zaloguj się

The total angular momentum of a rigid body can be calculated using the summation of the angular momentum of all the tiny particles rotating in the same plane. Considering all the tiny particles rotating in the x-y plane, the direction of angular momentum of all such particles and that of the rigid body would be perpendicular to the plane of the rotation along the z-axis.

This calculation can get complicated when tiny particles within the rigid body are not rotating in the same plane but have components for rotation along the z-axis. Such particles will have components of their angular momentum perpendicular to the z-axis. The situation becomes easier if the rigid body is symmetrical about the axis of rotation, the z-axis. In such a case, all the angular momentum components perpendicular to the z-axis, from either side of the rigid body, will cancel out. Therefore, if a rigid body has a symmetric axis of rotation, total angular momentum will be the summation of angular momentum of individual tiny particles.

For cases where the axis of rotation is not symmetric, the direction of angular momentum is not along the axis of rotation, but traces a cone around the axis of rotation. That means that there is a net torque acting on the body, even though the angular velocity of the body is constant.

This text is adapted from Openstax, University Physics Volume 1, Section 11.2: Angular Momentum.

Tagi
Angular MomentumRigid BodyRotationSymmetryAxis Of RotationTorque

Z rozdziału 11:

article

Now Playing

11.9 : Angular Momentum: Rigid Body

Dynamics of Rotational Motions

8.5K Wyświetleń

article

11.1 : Moment obrotowy

Dynamics of Rotational Motions

11.7K Wyświetleń

article

11.2 : Obliczenia użytecznego momentu obrotowego

Dynamics of Rotational Motions

8.7K Wyświetleń

article

11.3 : Równanie dynamiki obrotowej

Dynamics of Rotational Motions

4.8K Wyświetleń

article

11.4 : Toczenie bez poślizgu

Dynamics of Rotational Motions

3.3K Wyświetleń

article

11.5 : Toczenie z poślizgiem

Dynamics of Rotational Motions

4.5K Wyświetleń

article

11.6 : Praca i moc dla ruchu obrotowego

Dynamics of Rotational Motions

5.0K Wyświetleń

article

11.7 : Twierdzenie o energii pracy dla ruchu obrotowego

Dynamics of Rotational Motions

5.6K Wyświetleń

article

11.8 : Moment pędu: Pojedyncza cząstka

Dynamics of Rotational Motions

5.9K Wyświetleń

article

11.10 : Zasada zachowania momentu pędu

Dynamics of Rotational Motions

9.9K Wyświetleń

article

11.11 : Zasada zachowania momentu pędu: zastosowanie

Dynamics of Rotational Motions

10.5K Wyświetleń

article

11.12 : Obrót asymetrycznego wierzchołka

Dynamics of Rotational Motions

769 Wyświetleń

article

11.13 : Żyroskop

Dynamics of Rotational Motions

2.8K Wyświetleń

article

11.14 : Żyroskop: Precesja

Dynamics of Rotational Motions

3.9K Wyświetleń

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone