Zaloguj się

In the middle of the nineteenth century, it was observed that two trains passing each other at a high relative speed get pulled towards each other. The same occurs when two cars pass each other at a high relative speed. The reason is that the fluid pressure drops in the region where the fluid speeds up. As the air between the trains or the cars increases in speed, its pressure reduces. The pressure on the outer parts of the vehicles is still the atmospheric pressure, while the resultant pressure difference creates a net inward force on the vehicles.

Bernoulli’s equation describes the relationship between fluid pressure and its speed. It is named after David Bernoulli (1700–1782), who published his studies on fluid motion in the book Hydrodynamica (1738). The equation is deduced by applying the principle of conservation of energy to a frictionless, steady, laminar fluid flow. Although it describes an ideal condition that fluids do not practically exhibit in real life, it almost holds true in many real-life situations and helps analyze them.

The three pressure terms in Bernoulli's equation are the fluid pressure, the kinetic energy of the fluid per unit volume, and the gravitational potential energy per unit volume. The latter two have the dimensions of pressure and are also called kinetic and gravitational energy densities. The equation states that the total pressure of the fluid, including the energy densities, is constant. As the fluid flows, the fluid pressure changes to accommodate the kinetic and gravitational energy contributions.

This text is adapted from Openstax, University Physics Volume 1, Section 14.6: Bernoulli's Equation.

Tagi

Bernoulli s EquationFluid PressureRelative SpeedPressure DifferenceNet Inward ForceDavid BernoulliHydrodynamicaConservation Of EnergyFrictionless FlowLaminar FlowKinetic Energy DensityGravitational Energy DensityTotal Pressure

Z rozdziału 13:

article

Now Playing

13.18 : Bernoulli's Equation

Fluid Mechanics

9.5K Wyświetleń

article

13.1 : Charakterystyka płynów

Fluid Mechanics

3.5K Wyświetleń

article

13.2 : Gęstość

Fluid Mechanics

13.0K Wyświetleń

article

13.3 : Ciśnienie płynów

Fluid Mechanics

13.6K Wyświetleń

article

13.4 : Zmienność ciśnienia atmosferycznego

Fluid Mechanics

1.8K Wyświetleń

article

13.5 : Prawo Pascala

Fluid Mechanics

7.8K Wyświetleń

article

13.6 : Zastosowanie prawa Pascala

Fluid Mechanics

7.8K Wyświetleń

article

13.7 : Manometry

Fluid Mechanics

2.9K Wyświetleń

article

13.8 : Pływalności

Fluid Mechanics

7.4K Wyświetleń

article

13.9 : Zasada Archimedesa

Fluid Mechanics

7.5K Wyświetleń

article

13.10 : Gęstość i zasada Archimedesa

Fluid Mechanics

6.4K Wyświetleń

article

13.11 : Płyny przyspieszające

Fluid Mechanics

962 Wyświetleń

article

13.12 : Napięcie powierzchniowe i energia powierzchniowa

Fluid Mechanics

1.3K Wyświetleń

article

13.13 : Nadciśnienie wewnątrz kropli i pęcherzyka

Fluid Mechanics

1.5K Wyświetleń

article

13.14 : Kąt zwilżania

Fluid Mechanics

11.4K Wyświetleń

See More

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone