Oturum Aç

In the middle of the nineteenth century, it was observed that two trains passing each other at a high relative speed get pulled towards each other. The same occurs when two cars pass each other at a high relative speed. The reason is that the fluid pressure drops in the region where the fluid speeds up. As the air between the trains or the cars increases in speed, its pressure reduces. The pressure on the outer parts of the vehicles is still the atmospheric pressure, while the resultant pressure difference creates a net inward force on the vehicles.

Bernoulli’s equation describes the relationship between fluid pressure and its speed. It is named after David Bernoulli (1700–1782), who published his studies on fluid motion in the book Hydrodynamica (1738). The equation is deduced by applying the principle of conservation of energy to a frictionless, steady, laminar fluid flow. Although it describes an ideal condition that fluids do not practically exhibit in real life, it almost holds true in many real-life situations and helps analyze them.

The three pressure terms in Bernoulli's equation are the fluid pressure, the kinetic energy of the fluid per unit volume, and the gravitational potential energy per unit volume. The latter two have the dimensions of pressure and are also called kinetic and gravitational energy densities. The equation states that the total pressure of the fluid, including the energy densities, is constant. As the fluid flows, the fluid pressure changes to accommodate the kinetic and gravitational energy contributions.

This text is adapted from Openstax, University Physics Volume 1, Section 14.6: Bernoulli's Equation.

Etiketler

Bernoulli s EquationFluid PressureRelative SpeedPressure DifferenceNet Inward ForceDavid BernoulliHydrodynamicaConservation Of EnergyFrictionless FlowLaminar FlowKinetic Energy DensityGravitational Energy DensityTotal Pressure

Bölümden 13:

article

Now Playing

13.18 : Bernoulli's Equation

Akışkanlar Mekaniği

9.4K Görüntüleme Sayısı

article

13.1 : Sıvıların Özellikleri

Akışkanlar Mekaniği

3.4K Görüntüleme Sayısı

article

13.2 : Yoğunluk

Akışkanlar Mekaniği

12.7K Görüntüleme Sayısı

article

13.3 : Akışkanların Basıncı

Akışkanlar Mekaniği

13.2K Görüntüleme Sayısı

article

13.4 : Atmosferik Basıncın Değişimi

Akışkanlar Mekaniği

1.8K Görüntüleme Sayısı

article

13.5 : Pascal Yasası

Akışkanlar Mekaniği

7.7K Görüntüleme Sayısı

article

13.6 : Pascal Yasasının Uygulanması

Akışkanlar Mekaniği

7.7K Görüntüleme Sayısı

article

13.7 : Basınç Göstergeleri

Akışkanlar Mekaniği

2.8K Görüntüleme Sayısı

article

13.8 : Yüzdürme

Akışkanlar Mekaniği

7.0K Görüntüleme Sayısı

article

13.9 : Arşimet Prensibi

Akışkanlar Mekaniği

7.4K Görüntüleme Sayısı

article

13.10 : Yoğunluk ve Arşimet Prensibi

Akışkanlar Mekaniği

6.4K Görüntüleme Sayısı

article

13.11 : Hızlandırıcı Sıvılar

Akışkanlar Mekaniği

953 Görüntüleme Sayısı

article

13.12 : Yüzey Gerilimi ve Yüzey Enerjisi

Akışkanlar Mekaniği

1.2K Görüntüleme Sayısı

article

13.13 : Bir damla ve bir baloncuk içindeki aşırı basınç

Akışkanlar Mekaniği

1.5K Görüntüleme Sayısı

article

13.14 : Temas Açısı

Akışkanlar Mekaniği

11.4K Görüntüleme Sayısı

See More

JoVE Logo

Gizlilik

Kullanım Şartları

İlkeler

Araştırma

Eğitim

JoVE Hakkında

Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır