Zaloguj się

Chebyshev’s theorem, also known as Chebyshev’s Inequality, states that the proportion of values of a dataset for K standard deviation is calculated using the equation:

Equation1

Here, K is any positive integer greater than one. For example, if K is 1.5, at least 56% of the data values lie within 1.5 standard deviations from the mean for a dataset. If K is 2, at least 75% of the data values lie within two standard deviations from the mean of the dataset, and if K is equal to 3, then at least 89% of the data values lie within three standard deviations from the mean of that dataset.

Interestingly, Chebyshev’s theorem estimates the proportion of data that will fall inside (minimum proportion) and outside (maximum proportion) a given number of standard deviations. If K is equal to 2, then the rule suggests a possibility that 75% of the data values lie inside two standard deviations from the mean and 25 % of the data value lie outside the two standard deviations away from the mean. It is important to understand that this theorem provides only approximations and not exact answers.

One of the advantages of this theorem is that it can be applied to datasets having normal, unknown, or skewed distributions. In contrast, the empirical or three-sigma rule can only be used for datasets with a normal distribution.

Tagi
Chebyshev s TheoremChebyshev s InequalityStandard DeviationData ValuesK Standard DeviationsMeanDataset DistributionApproximationsEmpirical RuleNormal DistributionSkewed Distribution

Z rozdziału 4:

article

Now Playing

4.10 : Chebyshev's Theorem to Interpret Standard Deviation

Measures of Variation

4.0K Wyświetleń

article

4.1 : Co to jest zmienność?

Measures of Variation

10.9K Wyświetleń

article

4.2 : Zakres

Measures of Variation

10.8K Wyświetleń

article

4.3 : Odchylenie standardowe

Measures of Variation

15.5K Wyświetleń

article

4.4 : Błąd standardowy średniej

Measures of Variation

5.4K Wyświetleń

article

4.5 : Obliczanie odchylenia standardowego

Measures of Variation

7.0K Wyświetleń

article

4.6 : Wariancja

Measures of Variation

9.1K Wyświetleń

article

4.7 : Współczynnik zmienności

Measures of Variation

3.6K Wyświetleń

article

4.8 : Praktyczna reguła zakresu do interpretacji odchylenia standardowego

Measures of Variation

8.7K Wyświetleń

article

4.9 : Empiryczna metoda interpretacji odchylenia standardowego

Measures of Variation

5.0K Wyświetleń

article

4.11 : Średnie odchylenie bezwzględne

Measures of Variation

2.5K Wyświetleń

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone