JoVE Logo

Zaloguj się

39.1 : Zygotic Development And Stem Cell Formation

The development of all multicellular organisms starts with the fusion of haploid cells called sperm and egg to form a diploid zygote. A zygote is a totipotent cell that can develop into a complete organism. The zygote undergoes cell division or cleavage to form an 8-cell mass. Until this stage, the cells are spherical, loosely attached, and remain totipotent. Totipotent cells are capable of developing both the embryonic and the extraembryonic tissues. However, as they continue to divide, they reach the 64-cell stage, called the blastocyst. The cells differentiate into two distinct developmental pathways and form the inner cell mass (ICM) and the trophectoderm (TE) cells. ICM is the source of embryonic stem cells or ES cells. ICM and TE are self-renewing but can differentiate only to limited cell types.

The ICM next differentiates into the embryonic tissues and forms the three germ layers (mesoderm, endoderm, and ectoderm) that give rise to all cell types of the embryo (neural cells, epithelial cells, muscle cells, and blood cells). In contrast, TE cells form the extraembryonic tissues such as the placenta, amnion, and chorion that cover the growing embryo. Once the blastocyst gets implanted on the uterine wall, they undergo further embryonic development.

After birth, each adult tissue retains a fraction of stem cells called the adult stem cells. Adult stem cells can form cells of a particular tissue type to help replace damaged or dead cells and maintain tissue integrity. Adult stem cells include hematopoietic stem cells of the bone marrow and epidermal stem cells of the skin, gut, brain, lung, or liver.

Tagi

Zygotic DevelopmentStem Cell FormationHaploid CellsDiploid ZygoteTotipotent CellsCell DivisionBlastocystInner Cell Mass ICMTrophectoderm TEEmbryonic Stem CellsGerm LayersMesodermEndodermEctodermAdult Stem CellsTissue Integrity

Z rozdziału 39:

article

Now Playing

39.1 : Zygotic Development And Stem Cell Formation

Stem Cell Biology And Renewal in Epithelial Tissue

5.1K Wyświetleń

article

39.2 : Źródło i siła działania komórek macierzystych

Stem Cell Biology And Renewal in Epithelial Tissue

4.7K Wyświetleń

article

39.3 : Wnęka komórek macierzystych

Stem Cell Biology And Renewal in Epithelial Tissue

5.0K Wyświetleń

article

39.4 : Odnowa jelitowych komórek macierzystych

Stem Cell Biology And Renewal in Epithelial Tissue

2.5K Wyświetleń

article

39.5 : Rola sygnalizacji Ephrin-Eph w odnowie jelitowych komórek macierzystych

Stem Cell Biology And Renewal in Epithelial Tissue

2.2K Wyświetleń

article

39.6 : Rola sygnalizacji Notch w odnowie jelitowych komórek macierzystych

Stem Cell Biology And Renewal in Epithelial Tissue

2.1K Wyświetleń

article

39.7 : Odnowa komórek macierzystych naskórka skóry

Stem Cell Biology And Renewal in Epithelial Tissue

2.5K Wyświetleń

article

39.8 : Wielomoc i nisza wybrzuszonej komórki macierzystej

Stem Cell Biology And Renewal in Epithelial Tissue

3.4K Wyświetleń

article

39.9 : Kliniczne zastosowania komórek macierzystych naskórka

Stem Cell Biology And Renewal in Epithelial Tissue

2.7K Wyświetleń

article

39.10 : Charakterystyczne cechy dorosłych komórek macierzystych a rakowe komórki macierzyste

Stem Cell Biology And Renewal in Epithelial Tissue

3.4K Wyświetleń

article

39.11 : Hodowla komórek macierzystych

Stem Cell Biology And Renewal in Epithelial Tissue

5.1K Wyświetleń

article

39.12 : Odnowa tkanek bez komórek macierzystych

Stem Cell Biology And Renewal in Epithelial Tissue

1.7K Wyświetleń

article

39.13 : Ogniwa nieodnawialne

Stem Cell Biology And Renewal in Epithelial Tissue

2.3K Wyświetleń

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone