When a force is exerted on an object, it can cause that object to rotate about an axis. The moment of a force, also known as torque, measures the force's ability to cause that rotation. In the case of a cyclist pedaling a bicycle, the force exerted on the pedal causes the crankshaft to rotate, which in turn causes the wheel to spin. The moment of the force exerted on the pedal drives the wheel's rotation.

First, establish a coordinate system to understand how the moment of a force works. Consider the bicycle as an example. Establish the x-axis to be tangential to the wheel, and the y-axis to be perpendicular to the x-axis and pointing upwards. The z-axis can be pointing outwards from the wheel.

When the cyclist exerts a force on the pedal, the crankshaft rotates such that the chain attached to the crankshaft exerts a force on the axle of the wheel. The force exerted on the axle is then along the x-axis. The radius of the axle is the moment arm, which can be expressed in terms of the position vector.

The moment of force about point O is along the z-direction, perpendicular to both the force and position vector. It is expressed as the cross-product of the position and force vectors.

The cross-product can be solved by expressing the coefficient of components of force and position vector in the form of a determinant. The determinate can be expanded to solve for each component of the moment of force.

For example, the moment's component along the x-axis is expressed in terms of the y and z components of the force and position vector. Similarly, the other two components of the moment can be expressed in cartesian vector form.

Understanding the moment of force is important in many fields of science and engineering. It can help us calculate the forces on objects such as gears, pulleys, and levers and can aid in designing machines that convert forces into movement. In the bicycle example, understanding the moment of force can help us optimize the design of the crankshaft and chain to maximize the force exerted on the wheel.

Tagi
Moment Of ForceTorqueRotationAxisForce VectorPosition VectorCrankshaftBicycle MechanicsCross productMoment ArmCoordinate SystemCartesian Vector FormEngineering ApplicationsForce CalculationMachine Design

Z rozdziału 4:

article

Now Playing

4.10 : Moment of a Force About an Axis: Vector

Force System Resultants

245 Wyświetleń

article

4.1 : Moment siły: sformułowanie skalarne

Force System Resultants

539 Wyświetleń

article

4.2 : Moment siły: rozwiązywanie problemów

Force System Resultants

419 Wyświetleń

article

4.3 : Moment wynikowy: Sformułowanie skalarne

Force System Resultants

1.3K Wyświetleń

article

4.4 : Moment siły: Sformułowanie wektorowe

Force System Resultants

1.2K Wyświetleń

article

4.5 : Forma kartezjańska do formułowania wektorowego

Force System Resultants

518 Wyświetleń

article

4.6 : Moment wynikowy: Sformułowanie wektorowe

Force System Resultants

2.9K Wyświetleń

article

4.7 : Zasada momentów

Force System Resultants

1.4K Wyświetleń

article

4.8 : Zasada momentów: rozwiązywanie problemów

Force System Resultants

690 Wyświetleń

article

4.9 : Moment siły wokół osi: skalar

Force System Resultants

240 Wyświetleń

article

4.11 : Para

Force System Resultants

317 Wyświetleń

article

4.12 : Pary: formułowanie skalarne i wektorowe

Force System Resultants

182 Wyświetleń

article

4.13 : Równorzędne pary

Force System Resultants

221 Wyświetleń

article

4.14 : Chwila pary: rozwiązywanie problemów

Force System Resultants

739 Wyświetleń

article

4.15 : Układ sił i par

Force System Resultants

291 Wyświetleń

See More

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone