Zaloguj się

Beams are structural elements commonly employed in engineering applications requiring different load-carrying capacities. The first step in analyzing a beam under a distributed load is to simplify the problem by dividing the load into smaller regions, which allows one to consider each region separately and calculate the magnitude of the equivalent resultant load acting on each portion of the beam. The magnitude of the equivalent resultant load for each region can be determined by calculating the area of the respective regions, which represents the force exerted by the load in each region.

Next, locate the position of each resultant load on the beam. This can be done by finding the centroids of the regions, which are the points where the mass of the regions can be considered concentrated. The individual resultant loads act at these centroids, exerting their force at specific points along the beam.

The equivalent resultant load for the entire beam can be calculated with the magnitudes and positions of the determined individual resultant loads. This involves adding the individual resultant loads of the different regions to obtain the overall equivalent resultant load acting on the beam.

The next step is to determine the moment about a specific point, usually the fixed end of the beam. The moment measures the rotational effect of the force acting on the beam. The resultant moment can be determined by adding the individual moments acting due to each load. The moment of each load is equal to the product of the force and its distance from the specified point.

Equation 1

By recalling the moment principle, the moment of the equivalent resultant load about the specified point equals the product of the equivalent resultant load and the distance from that point.

Equation 2

By rearranging the equation and substituting the terms, the location of the equivalent resultant load along the beam can be determined.

Equation 3

Tagi

Distributed LoadsBeam AnalysisStructural ElementsEquivalent Resultant LoadLoad RegionsCentroidsMoment CalculationRotational EffectForce ExertionEngineering ApplicationsIndividual Resultant LoadsMoment Principle

Z rozdziału 4:

article

Now Playing

4.20 : Distributed Loads: Problem Solving

Force System Resultants

582 Wyświetleń

article

4.1 : Moment siły: sformułowanie skalarne

Force System Resultants

625 Wyświetleń

article

4.2 : Moment siły: rozwiązywanie problemów

Force System Resultants

512 Wyświetleń

article

4.3 : Moment wynikowy: Sformułowanie skalarne

Force System Resultants

1.3K Wyświetleń

article

4.4 : Moment siły: Sformułowanie wektorowe

Force System Resultants

2.2K Wyświetleń

article

4.5 : Forma kartezjańska do formułowania wektorowego

Force System Resultants

534 Wyświetleń

article

4.6 : Moment wynikowy: Sformułowanie wektorowe

Force System Resultants

2.9K Wyświetleń

article

4.7 : Zasada momentów

Force System Resultants

1.5K Wyświetleń

article

4.8 : Zasada momentów: rozwiązywanie problemów

Force System Resultants

746 Wyświetleń

article

4.9 : Moment siły wokół osi: skalar

Force System Resultants

280 Wyświetleń

article

4.10 : Moment siły wokół osi: wektor

Force System Resultants

285 Wyświetleń

article

4.11 : Para

Force System Resultants

363 Wyświetleń

article

4.12 : Pary: formułowanie skalarne i wektorowe

Force System Resultants

206 Wyświetleń

article

4.13 : Równorzędne pary

Force System Resultants

243 Wyświetleń

article

4.14 : Chwila pary: rozwiązywanie problemów

Force System Resultants

796 Wyświetleń

See More

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone