While designing structures exposed to non-uniform loads, it is crucial to consider the resultant force and its location. This resultant force is a single vector representing the net force applied due to the distributed load.

Examples such as load distribution due to wind and load distribution on a bridge illustrate how this concept is used to analyze and design safe, reliable structures under variable loading conditions. Most structures, such as residential buildings, bridges, and towers, are designed to withstand non-uniform wind loading, which varies with the wind speed and direction. Similarly, bridges are designed to withstand the weight of vehicles passing over them. However, the weight distribution of vehicles is not uniform, and some parts of the bridge may experience more stress and strain than others. It is necessary to calculate the resultant force acting on the buildings or bridges, which is a non-uniform load distribution problem.

To determine this force, the magnitude of each differential force acting on infinitesimal areas must be summed and integrated over the load-bearing surface area. The magnitude of this resultant force is equal to the total volume under the distributed-loading diagram. The location of this resultant force can be determined by comparing its moments with the moments of all the differential forces about their respective axes. This implies that the line of action of this force will pass through the geometric center or centroid of the volume under consideration.

Knowing where and how much force is applied to a structure allows engineers to ensure sufficient strength and rigidity for the structure to be fit for purpose. These values may also change based on variable loading conditions, so it is essential to consider these potential changes in order to design a safe and secure structure.

Tagi
Resultant ForceDistributed LoadingNon uniform LoadsLoad DistributionStructural DesignWind LoadingVehicle Weight DistributionStress And StrainMagnitude Of ForcesLoad bearing Surface AreaGeometric CenterCentroidEngineering AnalysisVariable Loading Conditions

Z rozdziału 9:

article

Now Playing

9.9 : Resultant of a General Distributed Loading

Center of Gravity and Centroid

577 Wyświetleń

article

9.1 : Środek ciężkości

Center of Gravity and Centroid

1.3K Wyświetleń

article

9.2 : Środek masy

Center of Gravity and Centroid

1.0K Wyświetleń

article

9.3 : Środek ciężkości ciała

Center of Gravity and Centroid

719 Wyświetleń

article

9.4 : Środek ciężkości ciała: rozwiązywanie problemów

Center of Gravity and Centroid

980 Wyświetleń

article

9.5 : Środek ciężkości dla paraboloidy obrotu

Center of Gravity and Centroid

437 Wyświetleń

article

9.6 : Obiekty złożone

Center of Gravity and Centroid

989 Wyświetleń

article

9.7 : Twierdzenia Pappusa i Guldinusa

Center of Gravity and Centroid

1.6K Wyświetleń

article

9.8 : Twierdzenia Pappusa i Guldinusa: rozwiązywanie problemów

Center of Gravity and Centroid

585 Wyświetleń

article

9.10 : Ciśnienie płynu

Center of Gravity and Centroid

486 Wyświetleń

article

9.11 : Ciśnienie płynu na płaskiej płycie o stałej szerokości

Center of Gravity and Centroid

1.2K Wyświetleń

article

9.12 : Ciśnienie płynu na zakrzywionej płycie o stałej szerokości

Center of Gravity and Centroid

841 Wyświetleń

article

9.13 : Ciśnienie płynu na płaskiej płycie o zmiennej szerokości

Center of Gravity and Centroid

944 Wyświetleń

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone