Zaloguj się

Solid dosage forms such as tablets and capsules undergo rigorous manufacturing processes to ensure stability and effectiveness. Their dissolution and absorption properties are influenced significantly by the choice of excipients (inactive ingredients that serve various roles in the formulation), and the methodology applied during production. The manufacturing parameters, such as compression force and granulation techniques, significantly affect dissolution rates. Elevated compression forces contribute to a higher tablet density, negatively impacting wettability while augmenting structural integrity, thereby decelerating dissolution. The formulation often includes excipients that stabilize the product, enhance functionality, and ensure optimal bioavailability. These excipients range from vehicles and diluents, which facilitate the drug's incorporation into the systemic circulation, to disintegrants and surfactants, which foster tablet disintegration and lower the surface tension between two ingredients to make them more miscible, respectively. The strategic employment of binders adds cohesion to powders to allow tablets to stick together, whereas lubricants minimize intergranular friction and help keep ingredients from sticking together.

Considering these excipients' hydrophilic or hydrophobic nature is imperative, as their interaction with the drug substance can profoundly impact dissolution characteristics. For instance, hydrophilic diluents enhance the dissolution of hydrophobic drugs, while hydrophobic binders and lubricants might hinder this process.

Z rozdziału 3:

article

Now Playing

3.18 : Factors Influencing Drug Absorption: Pharmaceutical Parameters

Pharmacokinetics: Drug Absorption

97 Wyświetleń

article

3.1 : Drug Administration and Therapy Phases: Overview

Pharmacokinetics: Drug Absorption

355 Wyświetleń

article

3.2 : Drug Absorption: Overview

Pharmacokinetics: Drug Absorption

419 Wyświetleń

article

3.3 : Drug Delivery: Overview

Pharmacokinetics: Drug Absorption

225 Wyświetleń

article

3.4 : Drug Delivery: Enteral Route

Pharmacokinetics: Drug Absorption

302 Wyświetleń

article

3.5 : Drug Delivery: Parenteral Route

Pharmacokinetics: Drug Absorption

299 Wyświetleń

article

3.6 : Drug Delivery: Miscellaneous Routes

Pharmacokinetics: Drug Absorption

258 Wyświetleń

article

3.7 : Cellular Membranes and Drug Transport

Pharmacokinetics: Drug Absorption

211 Wyświetleń

article

3.8 : Mechanisms of Drug Absorption: Paracellular, Transcellular, and Vesicular Transport

Pharmacokinetics: Drug Absorption

271 Wyświetleń

article

3.9 : Passive Diffusion: Overview and Kinetics

Pharmacokinetics: Drug Absorption

263 Wyświetleń

article

3.10 : Pore Transport and Ion-Pair Transport

Pharmacokinetics: Drug Absorption

273 Wyświetleń

article

3.11 : Carrier-Mediated Transport

Pharmacokinetics: Drug Absorption

198 Wyświetleń

article

3.12 : Facilitated Diffusion

Pharmacokinetics: Drug Absorption

234 Wyświetleń

article

3.13 : Active Transport

Pharmacokinetics: Drug Absorption

319 Wyświetleń

article

3.14 : Vesicular Trasport: Endocytosis, Transcytosis and Exocytosis

Pharmacokinetics: Drug Absorption

488 Wyświetleń

See More

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone