Noncompartmental analyses leverage statistical moment theory to examine time-related changes in macroscopic events, encapsulating the collective outcomes stemming from the constituent elements in play. Statistical moment theory is a mathematical approach used to describe the time course of drug concentration in the body without assuming a specific compartmental model. SMT provides insights into drug absorption, distribution, metabolism, and elimination by treating drug concentration versus time data as a statistical distribution of molecules in time.

Mean residence time (MRT) is a pivotal parameter that describes the movement of drug molecules in and out of the system. It considers the individual movement of molecules within a system based on residence-time considerations. Residence-time considerations refer to analyzing how long individual drug molecules remain within the body or a specific compartment before being eliminated. The residence-time analysis uses statistical approaches to study the behavior of individual molecules as a distribution of times they reside in the body.

Calculating a drug's MRT within the body uses the moment curve obtained by integrating a probability density function of the drug multiplied by time. This yields insights into the distribution's characteristics, facilitating a deeper understanding of the drug's behavior within the biological system.

Substituting the mth moment into the moment curve yields various moment curves, each with distinct implications. For instance, the zero moment corresponds to the area under the curve, while the first moment defines the mean of the distribution via the area under the first moment curve. The second moment characterizes the variance of the distribution, and higher moments represent skewness and kurtosis.

Noncompartmental analysis, underpinned by statistical moment theory, offers a comprehensive framework for unraveling drug molecules' temporal dynamics and distribution characteristics within biological systems.

Z rozdziału 7:

article

Now Playing

7.26 : Noncompartmental Analysis: Statistical Moment Theory

Pharmacokinetic Models

28 Wyświetleń

article

7.1 : Metody analizy danych farmakokinetycznych – podejścia modelowe i niezależne od modelu

Pharmacokinetic Models

21 Wyświetleń

article

7.2 : Podejścia modelowe do danych farmakokinetycznych : modele kompartmentów

Pharmacokinetic Models

15 Wyświetleń

article

7.3 : Jednokomorowy model otwarty do podawania bolusa dożylnego: uwagi ogólne

Pharmacokinetic Models

34 Wyświetleń

article

7.4 : Jednokomorowy model otwarty do podawania dożylnego bolusa: Oszacowanie stałej szybkości eliminacji, okresu półtrwania i objętości dystrybucji

Pharmacokinetic Models

16 Wyświetleń

article

7.5 : Jednokomorowy model otwarty do podawania bolusa dożylnego: ocena klirensu

Pharmacokinetic Models

11 Wyświetleń

article

7.6 : Model jednokomorowy: infuzja dożylna

Pharmacokinetic Models

30 Wyświetleń

article

7.7 : Jednokomorowy model otwarty do podawania pozanaczyniowego: model absorpcji zerowego rzędu

Pharmacokinetic Models

8 Wyświetleń

article

7.8 : Jednokomorowy model otwarty do podawania pozanaczyniowego: model absorpcji pierwszego rzędu

Pharmacokinetic Models

40 Wyświetleń

article

7.9 : Model otwarty jednokomorowy: metoda Wagnera-Nelsona i Loo Riegelmana dla estymacji ka

Pharmacokinetic Models

47 Wyświetleń

article

7.10 : Model otwarty jednokomorowy: dane dotyczące wydalania moczu i oznaczanie k

Pharmacokinetic Models

15 Wyświetleń

article

7.11 : Modele wielokomorowe: Przegląd

Pharmacokinetic Models

7 Wyświetleń

article

7.12 : Model dwukomorowy otwarty: Przegląd

Pharmacokinetic Models

26 Wyświetleń

article

7.13 : Model dwukomorowy otwarty: podawanie bolusa dożylnie

Pharmacokinetic Models

50 Wyświetleń

article

7.14 : Model dwukomorowy otwarty: napar dożylny

Pharmacokinetic Models

51 Wyświetleń

See More

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone