When a fluid flows through a pipe, it experiences energy losses due to frictional resistance along the pipe walls, known as major losses. These energy losses result in a pressure drop, which varies based on the flow conditions — whether laminar or turbulent — and the specific physical properties of the fluid and pipe.
Fluid flow can be classified as laminar or turbulent, primarily based on the Reynolds number. This dimensionless number reflects the relative influence of inertial to viscous forces in the fluid. In laminar flow (Re < 2000), the fluid flows in parallel layers, or streamlines, with minimal cross-stream mixing. Here, the pressure drop mostly depends on the fluid's viscosity and is generally lower. In contrast, turbulent flow (Re > 4000) is characterized by chaotic eddies and swirling motions. In this regime, the pressure drop is influenced not only by viscosity but also by the roughness of the pipe wall, as these irregularities disrupt the flow further, increasing energy losses.
The pressure drop in a pipe depends on several factors: fluid properties, flow velocity, pipe characteristics, and dimensionless numbers.
The Darcy-Weisbach equation is the standard approach for quantifying the pressure drop due to frictional losses in pipe flow:
Where:
The friction factor f is crucial for calculating pressure drops, especially in turbulent flow. It depends on the Reynolds number and the relative roughness of the pipe. Engineers often refer to the Moody chart, which provides empirical values of friction factors across flow regimes and roughness levels.
The Colebrook equation
Where:
offers a precise method to calculate f for smooth and moderately rough pipes, but it is implicit and requires iterative solutions. To avoid iteration, approximations like the Haaland equation:
Where:
are commonly used in practice, providing reasonably accurate friction factor values without extensive calculation. Understanding these dynamics enables engineers to design pipe systems that manage flow efficiently, compensating for potential pressure losses over time as pipe roughness increases.
Z rozdziału 21:
Now Playing
Flow in Pipes
76 Wyświetleń
Flow in Pipes
84 Wyświetleń
Flow in Pipes
103 Wyświetleń
Flow in Pipes
62 Wyświetleń
Flow in Pipes
34 Wyświetleń
Flow in Pipes
48 Wyświetleń
Flow in Pipes
24 Wyświetleń
Flow in Pipes
75 Wyświetleń
Flow in Pipes
43 Wyświetleń
Flow in Pipes
52 Wyświetleń
Flow in Pipes
54 Wyświetleń
Flow in Pipes
54 Wyświetleń
Flow in Pipes
52 Wyświetleń
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone